BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25613285)

  • 1. Identification of novel genes responsible for salt tolerance by transposon mutagenesis in Saccharomyces cerevisiae.
    Park WK; Yang JW; Kim HS
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):567-75. PubMed ID: 25613285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae.
    Kim HS; Kim NR; Yang J; Choi W
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):1159-72. PubMed ID: 21556919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of YLR162W in Saccharomyces cerevisiae results in increased tolerance to organic solvents.
    Kim HS
    Biotechnol Lett; 2016 Nov; 38(11):1955-1960. PubMed ID: 27488408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Identification of the gene correlated with salt stress in the Saccharomyces cerevisiae 263-H9 mutant].
    Yu DK; Zhang XH; Liu XY; Bao XM; Gao D
    Yi Chuan; 2006 Oct; 28(10):1294-8. PubMed ID: 17035190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of novel genes to assign enhanced tolerance to osmotic stress in Saccharomyces cerevisiae.
    Kim B; Kim HS
    FEMS Microbiol Lett; 2018 Jul; 365(14):. PubMed ID: 29931330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transposon mutagenesis reveals novel loci affecting tolerance to salt stress and growth at low temperature.
    de Jesus Ferreira MC; Bao X; Laizé V; Hohmann S
    Curr Genet; 2001 Aug; 40(1):27-39. PubMed ID: 11570514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of RIM15 confers an increased tolerance to heavy metals in Saccharomyces cerevisiae.
    Kim HS
    Biotechnol Lett; 2020 Jul; 42(7):1193-1202. PubMed ID: 32248397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insertion of transposon in the vicinity of SSK2 confers enhanced tolerance to furfural in Saccharomyces cerevisiae.
    Kim HS; Kim NR; Kim W; Choi W
    Appl Microbiol Biotechnol; 2012 Jul; 95(2):531-40. PubMed ID: 22639140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray.
    Hirasawa T; Nakakura Y; Yoshikawa K; Ashitani K; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S
    Appl Microbiol Biotechnol; 2006 Apr; 70(3):346-57. PubMed ID: 16283296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae.
    Takahashi T; Shimoi H; Ito K
    Mol Genet Genomics; 2001 Aug; 265(6):1112-9. PubMed ID: 11523784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GUP1 and its close homologue GUP2, encoding multimembrane-spanning proteins involved in active glycerol uptake in Saccharomyces cerevisiae.
    Holst B; Lunde C; Lages F; Oliveira R; Lucas C; Kielland-Brandt MC
    Mol Microbiol; 2000 Jul; 37(1):108-24. PubMed ID: 10931309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ty element-induced temperature-sensitive mutations of Saccharomyces cerevisiae.
    Kawakami K; Shafer BK; Garfinkel DJ; Strathern JN; Nakamura Y
    Genetics; 1992 Aug; 131(4):821-32. PubMed ID: 1325386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Candidate Genes Involved in the Salt Tolerance of Date Palm (Phoenix dactylifera L.) Based on a Yeast Functional Bioassay.
    Patankar HV; Al-Harrasi I; Al-Yahyai R; Yaish MW
    DNA Cell Biol; 2018 Jun; 37(6):524-534. PubMed ID: 29596001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Yeast Transposon-Insertion Libraries for Phenotypic Screening and Protein Localization.
    Kumar A
    Cold Spring Harb Protoc; 2016 Jun; 2016(6):. PubMed ID: 27250939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance.
    Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W
    Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a second gene (ZSOD22) of Na+/H+ antiporter from salt-tolerant yeast Zygosaccharomyces rouxii and functional expression of ZSOD2 and ZSOD22 in Saccharomyces cerevisiae.
    Iwaki T; Higashida Y; Tsuji H; Tamai Y; Watanabe Y
    Yeast; 1998 Sep; 14(13):1167-74. PubMed ID: 9791888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of the genes of yeast chromosome V by genetic footprinting.
    Smith V; Chou KN; Lashkari D; Botstein D; Brown PO
    Science; 1996 Dec; 274(5295):2069-74. PubMed ID: 8953036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening and characterization of transposon-insertion mutants in a pseudohyphal strain of Saccharomyces cerevisiae.
    Suzuki C; Hori Y; Kashiwagi Y
    Yeast; 2003 Apr; 20(5):407-15. PubMed ID: 12673624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis.
    Hirasawa T; Yoshikawa K; Nakakura Y; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S
    J Biotechnol; 2007 Aug; 131(1):34-44. PubMed ID: 17604866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered Zymomonas mobilis for salt tolerance using EZ-Tn5-based transposon insertion mutagenesis system.
    Wang JL; Wu B; Qin H; You Y; Liu S; Shui ZX; Tan FR; Wang YW; Zhu QL; Li YB; Ruan ZY; Ma KD; Dai LC; Hu GQ; He MX
    Microb Cell Fact; 2016 Jun; 15(1):101. PubMed ID: 27287016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.