These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 25613366)

  • 1. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes.
    Bhatt MD; O'Dwyer C
    Phys Chem Chem Phys; 2015 Feb; 17(7):4799-844. PubMed ID: 25613366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrolyte Design for Low-Temperature Li-Metal Batteries: Challenges and Prospects.
    Sun S; Wang K; Hong Z; Zhi M; Zhang K; Xu J
    Nanomicro Lett; 2023 Nov; 16(1):35. PubMed ID: 38019309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing Nonflammable Liquid Electrolytes for Safe Li-Ion Batteries.
    Xie J; Lu YC
    Adv Mater; 2024 Apr; ():e2312451. PubMed ID: 38688700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review of Rechargeable Zinc-Air Batteries: Recent Progress and Future Perspectives.
    Nazir G; Rehman A; Lee JH; Kim CH; Gautam J; Heo K; Hussain S; Ikram M; AlObaid AA; Lee SY; Park SJ
    Nanomicro Lett; 2024 Feb; 16(1):138. PubMed ID: 38421464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)-Ion Batteries.
    Xu J; Dou Y; Wei Z; Ma J; Deng Y; Li Y; Liu H; Dou S
    Adv Sci (Weinh); 2017 Oct; 4(10):1700146. PubMed ID: 29051856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical approaches to defect mechanisms and transport properties of compounds used for electrodes and solid-state electrolytes in alkali-ion batteries.
    Zulueta YA; Nguyen MT
    Phys Chem Chem Phys; 2023 Oct; 25(41):27926-27935. PubMed ID: 37830129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rechargeable alkali metal-chlorine batteries: advances, challenges, and future perspectives.
    Xie Z; Sun L; Sajid M; Feng Y; Lv Z; Chen W
    Chem Soc Rev; 2024 Jul; ():. PubMed ID: 39007548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-atom site catalysis in Li-S batteries.
    Wang K; Liu S; Shu Z; Zheng Q; Zheng M; Dong Q
    Phys Chem Chem Phys; 2023 Oct; 25(38):25942-25960. PubMed ID: 37746671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progresses and Development of Advanced Atomic Layer Deposition towards High-Performance Li-Ion Batteries.
    Lu W; Liang L; Sun X; Sun X; Wu C; Hou L; Sun J; Yuan C
    Nanomaterials (Basel); 2017 Oct; 7(10):. PubMed ID: 29036916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Latest Trends in Electric Vehicles Batteries.
    Salgado RM; Danzi F; Oliveira JE; El-Azab A; Camanho PP; Braga MH
    Molecules; 2021 May; 26(11):. PubMed ID: 34073571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes.
    Eshetu GG; Zhang H; Judez X; Adenusi H; Armand M; Passerini S; Figgemeier E
    Nat Commun; 2021 Sep; 12(1):5459. PubMed ID: 34526508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations.
    Wang Y; Zhang W; Chen L; Shi S; Liu J
    Sci Technol Adv Mater; 2017; 18(1):134-146. PubMed ID: 28458737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances and interfacial challenges in solid-state electrolytes for rechargeable Li-air batteries.
    Hou Y; Chen Z; Zhang R; Cui H; Yang Q; Zhi C
    Exploration (Beijing); 2023 Jun; 3(3):20220051. PubMed ID: 37933378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 'Beyond Li-Ion Technology' - A status review.
    Banerjee AN; Joo S
    Nanotechnology; 2024 Jul; ():. PubMed ID: 39079542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-Li batteries: promises and challenges.
    Ponrouch A; Palacín MR
    Philos Trans A Math Phys Eng Sci; 2019 Aug; 377(2152):20180297. PubMed ID: 31280715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward Sustainable All Solid-State Li-Metal Batteries: Perspectives on Battery Technology and Recycling Processes.
    Wu X; Ji G; Wang J; Zhou G; Liang Z
    Adv Mater; 2023 Dec; 35(51):e2301540. PubMed ID: 37191036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigations of Li-Ion Battery Thermal Management Systems Based on Heat Pipes: A Review.
    Wu H; Niu M; Shao Y; Wang M; Li M; Liu X; Li Z
    ACS Omega; 2024 Jan; 9(1):97-116. PubMed ID: 38222571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opportunities and Challenges in the Development of Cathode Materials for Rechargeable Mg Batteries.
    Bitenc J; Dominko R
    Front Chem; 2018; 6():634. PubMed ID: 30619838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges and Strategies for High-Energy Aqueous Electrolyte Rechargeable Batteries.
    Zhang H; Liu X; Li H; Hasa I; Passerini S
    Angew Chem Int Ed Engl; 2021 Jan; 60(2):598-616. PubMed ID: 32339371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorine Chemistry in Rechargeable Batteries: Challenges, Progress, and Perspectives.
    Wang Y; Yang X; Meng Y; Wen Z; Han R; Hu X; Sun B; Kang F; Li B; Zhou D; Wang C; Wang G
    Chem Rev; 2024 Mar; 124(6):3494-3589. PubMed ID: 38478597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.