BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 25613411)

  • 1. Modification of ultrafiltration membrane with nanoscale zerovalent iron layers for humic acid fouling reduction.
    Ma B; Yu W; Jefferson WA; Liu H; Qu J
    Water Res; 2015 Mar; 71():140-9. PubMed ID: 25613411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the effect of humic acids and phenol on adsorption-ultrafiltration process performance.
    Mozia S; Tomaszewska M; Morawski AW
    Water Res; 2005; 39(2-3):501-9. PubMed ID: 15644259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of humic acid and its different molecular weight fractions on sedimentation of nanoscale zero-valent iron.
    Wu Y; Dong H; Tang L; Li L; Wang Y; Ning Q; Wang B; Zeng G
    Environ Sci Pollut Res Int; 2020 Jan; 27(3):2786-2796. PubMed ID: 31834581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deactivation of nanoscale zero-valent iron by humic acid and by retention in water.
    Kim DG; Hwang YH; Shin HS; Ko SO
    Environ Technol; 2013; 34(9-12):1625-35. PubMed ID: 24191498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal.
    Giasuddin AB; Kanel SR; Choi H
    Environ Sci Technol; 2007 Mar; 41(6):2022-7. PubMed ID: 17410800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of floc dynamic protection layer on alleviating ultrafiltration membrane fouling induced by humic substances.
    Ma B; Wu S; Wang B; Qi Z; Bai Y; Liu H; Qu J; Wu R
    J Environ Sci (China); 2020 Apr; 90():10-19. PubMed ID: 32081307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafiltration and nanofiltration membrane fouling by natural organic matter: Mechanisms and mitigation by pre-ozonation and pH.
    Yu W; Liu T; Crawshaw J; Liu T; Graham N
    Water Res; 2018 Aug; 139():353-362. PubMed ID: 29665507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of humic acid foulant from ultrafiltration membrane surface using photocatalytic oxidation process.
    Fang H; Sun DD; Wu M; Phay W; Tay JH
    Water Sci Technol; 2005; 51(6-7):373-80. PubMed ID: 16003999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron.
    Dong H; Lo IM
    Water Res; 2013 Jan; 47(1):419-27. PubMed ID: 23123051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of humic acid rejection and flux decline during filtration with negatively charged and uncharged ultrafiltration membranes.
    Shao J; Hou J; Song H
    Water Res; 2011 Jan; 45(2):473-82. PubMed ID: 20863548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple dynamic Al-based floc layers on ultrafiltration membrane surfaces for humic acid and reservoir water fouling reduction.
    Ma B; Li W; Liu R; Liu G; Sun J; Liu H; Qu J; van der Meer W
    Water Res; 2018 Aug; 139():291-300. PubMed ID: 29656194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fouling mitigation in humic acid ultrafiltration using polysulfone/SAPO-34 mixed matrix membrane.
    Junaidi MU; Leo CP; Kamal SN; Ahmad AL
    Water Sci Technol; 2013; 67(9):2102-9. PubMed ID: 23656955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid.
    Kim HS; Ahn JY; Kim C; Lee S; Hwang I
    Chemosphere; 2014 Oct; 113():93-100. PubMed ID: 25065795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of fouling of gravity-driven membrane by combined treatment of persulphate/nanoscale zero-valent iron/ultraviolet and dynamic dual coagulant flocs layer.
    Zhao F; Zhou Z; Du P; Li X; Lu Q
    Environ Technol; 2024 Jul; 45(17):3405-3417. PubMed ID: 37226802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights into the humic acid fouling mechanism of ultrafiltration membranes for different Ca
    Miao R; Wu Y; Wang P; Wu G; Wang L; Li X; Wang J; Lv Y; Liu T
    Water Sci Technol; 2018 May; 77(9-10):2265-2273. PubMed ID: 29757178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced gypsum scaling by organic fouling layer on nanofiltration membrane: Characteristics and mechanisms.
    Wang J; Wang L; Miao R; Lv Y; Wang X; Meng X; Yang R; Zhang X
    Water Res; 2016 Mar; 91():203-13. PubMed ID: 26799710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a better hydraulic cleaning strategy for ultrafiltration membrane fouling by humic acid: Effect of backwash water composition.
    Chang H; Liang H; Qu F; Ma J; Ren N; Li G
    J Environ Sci (China); 2016 May; 43():177-186. PubMed ID: 27155423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: influences of interfacial characteristics of foulants and fouling mechanisms.
    Qu F; Liang H; Wang Z; Wang H; Yu H; Li G
    Water Res; 2012 Apr; 46(5):1490-500. PubMed ID: 22178303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of humic acid and clay content on the transport of polymer-coated iron nanoparticles through sand.
    Jung B; O'Carroll D; Sleep B
    Sci Total Environ; 2014 Oct; 496():155-164. PubMed ID: 25079234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of interactions between NOM and particles on UF fouling mechanisms.
    Jermann D; Pronk W; Kägi R; Halbeisen M; Boller M
    Water Res; 2008 Aug; 42(14):3870-8. PubMed ID: 18715606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.