These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

35 related articles for article (PubMed ID: 25613472)

  • 1. Temperature-induced amorphisation of hexagonal ice.
    Handle PH; Loerting T
    Phys Chem Chem Phys; 2015 Feb; 17(7):5403-12. PubMed ID: 25613472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymorphism and polyamorphism in bilayer water confined to slit nanopore under high pressure.
    Bai J; Zeng XC
    Proc Natl Acad Sci U S A; 2012 Dec; 109(52):21240-5. PubMed ID: 23236178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The glass transition in high-density amorphous ice.
    Loerting T; Fuentes-Landete V; Handle PH; Seidl M; Amann-Winkel K; Gainaru C; Böhmer R
    J Non Cryst Solids; 2015 Jan; 407():423-430. PubMed ID: 25641986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural differences between unannealed and expanded high-density amorphous ice based on isotope substitution neutron diffraction.
    Amann-Winkel K; Bowron DT; Loerting T
    Mol Phys; 2019; 117(22):3207-3216. PubMed ID: 32165770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Configurational entropy of ice XIX and its isotope effect.
    Gasser TM; Thoeny AV; Fortes AD; Loerting T
    Sci Rep; 2024 May; 14(1):10517. PubMed ID: 38714722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure tuning reverse martensitic transformation in the Mn
    Alves Dos Santos E; França JKP; Dos Santos AO; Nurrieli A; Do Carmo D; Dos Reis RD; Moreira da Silva L
    J Phys Condens Matter; 2023 Dec; 36(13):. PubMed ID: 38064751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unveiling a common phase transition pathway of high-density amorphous ices through time-resolved x-ray scattering.
    Yang C; Ladd-Parada M; Nam K; Jeong S; You S; Eklund T; Späh A; Pathak H; Lee JH; Eom I; Kim M; Perakis F; Nilsson A; Kim KH; Amann-Winkel K
    J Chem Phys; 2024 Jun; 160(24):. PubMed ID: 38916268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slightly Hydrogen-Ordered State of Ice IV Evidenced by
    Kobayashi H; Komatsu K; Ito H; Machida S; Hattori T; Kagi H
    J Phys Chem Lett; 2023 Nov; 14(47):10664-10669. PubMed ID: 37988084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface premelting of ice far below the triple point.
    Lin Y; Zhou T; Rosenmann ND; Yu L; Gage TE; Banik S; Neogi A; Chan H; Lei A; Lin XM; Holt M; Arslan I; Wen J
    Proc Natl Acad Sci U S A; 2023 Oct; 120(44):e2304148120. PubMed ID: 37844213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure-Induced Melting of Confined Ice.
    Sotthewes K; Bampoulis P; Zandvliet HJW; Lohse D; Poelsema B
    ACS Nano; 2017 Dec; 11(12):12723-12731. PubMed ID: 29112376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of porous ice frameworks at room temperature.
    Liu Y; Zhu W; Jiang J; Zhu C; Liu C; Slater B; Ojamäe L; Francisco JS; Zeng XC
    Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34326263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of high-pressure planetary ices by cryo-recovery. II. High-pressure apparatus, examples and a new high-pressure phase of MgSO
    Wang W; Fortes AD; Dobson DP; Howard CM; Bowles J; Hughes NJ; Wood IG
    J Appl Crystallogr; 2018 Jun; 51(Pt 3):692-705. PubMed ID: 29896058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical Studies of Anisotropic Melting of Ice Induced by Ultrafast Nonthermal Heating.
    Dawod I; Patra K; Cardoch S; Jönsson HO; Sellberg JA; Martin AV; Binns J; Grånäs O; Mancuso AP; Caleman C; Timneanu N
    ACS Phys Chem Au; 2024 Jul; 4(4):385-392. PubMed ID: 39069981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CH
    Sameera WMC; Senevirathne B; Andersson S; Al-Lbadi M; Hidaka H; Kouchi A; Nyman G; Watanabe N
    J Phys Chem A; 2021 Jan; 125(1):387-393. PubMed ID: 33370120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamically Stable Intermediate in the Course of Hydrogen Ordering from Ice V to Ice XIII.
    Yamashita K; Loerting T
    J Phys Chem Lett; 2024 Feb; 15(4):1181-1187. PubMed ID: 38270372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correction to "CH
    Sameera WMC; Senevirathne B; Andersson S; Al-Ibadi M; Hidaka H; Kouchi A; Nyman G; Watanabe N
    J Phys Chem A; 2024 Feb; 128(7):1397. PubMed ID: 38350652
    [No Abstract]   [Full Text] [Related]  

  • 17. The impact of temperature and unwanted impurities on slow compression of ice.
    Tonauer CM; Bauer M; Loerting T
    Phys Chem Chem Phys; 2021 Dec; 24(1):35-41. PubMed ID: 34897324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-induced amorphization in CaCO
    Hou M; Zhang Q; Tao R; Liu H; Kono Y; Mao HK; Yang W; Chen B; Fei Y
    Nat Commun; 2019 Apr; 10(1):1963. PubMed ID: 31036817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Adam-Gibbs relation and the TIP4P/2005 model of water.
    Handle PH; Sciortino F
    Mol Phys; 2018; 116(21-22):3366-3371. PubMed ID: 30338319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man's land.
    Handle PH; Loerting T; Sciortino F
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13336-13344. PubMed ID: 29133419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.