BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 25613479)

  • 21. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis.
    Wang C; Xie Z; deKrafft KE; Lin W
    J Am Chem Soc; 2011 Aug; 133(34):13445-54. PubMed ID: 21780787
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced photocatalytic hydrogen production from an MCM-41-immobilized photosensitizer-[Fe-Fe] hydrogenase mimic dyad.
    Wang W; Yu T; Zeng Y; Chen J; Yang G; Li Y
    Photochem Photobiol Sci; 2014 Nov; 13(11):1590-7. PubMed ID: 25238441
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cooperative Catalysis of an Alcohol Dehydrogenase and Rhodium-Modified Periodic Mesoporous Organosilica.
    Himiyama T; Waki M; Maegawa Y; Inagaki S
    Angew Chem Int Ed Engl; 2019 Jul; 58(27):9150-9154. PubMed ID: 31025503
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bio-inspired catalytic imine reduction by rhodium complexes with tethered Hantzsch pyridinium groups: evidence for direct hydride transfer from dihydropyridine to metal-activated substrate.
    McSkimming A; Bhadbhade MM; Colbran SB
    Angew Chem Int Ed Engl; 2013 Mar; 52(12):3411-6. PubMed ID: 23441069
    [No Abstract]   [Full Text] [Related]  

  • 25. Visible-light Homogeneous Photocatalytic Conversion of CO
    Rao H; Bonin J; Robert M
    ChemSusChem; 2017 Nov; 10(22):4447-4450. PubMed ID: 28862388
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bifunctional 3D Cu-MOFs containing glutarates and bipyridyl ligands: selective CO2 sorption and heterogeneous catalysis.
    Hwang IH; Bae JM; Kim WS; Jo YD; Kim C; Kim Y; Kim SJ; Huh S
    Dalton Trans; 2012 Nov; 41(41):12759-65. PubMed ID: 22968940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cp*Co(III) catalysts with proton-responsive ligands for carbon dioxide hydrogenation in aqueous media.
    Badiei YM; Wang WH; Hull JF; Szalda DJ; Muckerman JT; Himeda Y; Fujita E
    Inorg Chem; 2013 Nov; 52(21):12576-86. PubMed ID: 24131038
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bifunctional rhodium intercalator conjugates as mismatch-directing DNA alkylating agents.
    Schatzschneider U; Barton JK
    J Am Chem Soc; 2004 Jul; 126(28):8630-1. PubMed ID: 15250697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Iodide-Photocatalyzed Reduction of Carbon Dioxide to Formic Acid with Thiols and Hydrogen Sulfide.
    Berton M; Mello R; González-Núñez ME
    ChemSusChem; 2016 Dec; 9(24):3397-3400. PubMed ID: 27925406
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regarding ruthenium.
    Higgins S
    Nat Chem; 2010 Dec; 2(12):1100. PubMed ID: 21107377
    [No Abstract]   [Full Text] [Related]  

  • 31. An all-inorganic, stable, and highly active tetraruthenium homogeneous catalyst for water oxidation.
    Geletii YV; Botar B; Kögerler P; Hillesheim DA; Musaev DG; Hill CL
    Angew Chem Int Ed Engl; 2008; 47(21):3896-9. PubMed ID: 18351608
    [No Abstract]   [Full Text] [Related]  

  • 32. CO
    Zhang S; Fan Q; Xia R; Meyer TJ
    Acc Chem Res; 2020 Jan; 53(1):255-264. PubMed ID: 31913013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rational Design of Sulfur-Doped Copper Catalysts for the Selective Electroreduction of Carbon Dioxide to Formate.
    Huang Y; Deng Y; Handoko AD; Goh GKL; Yeo BS
    ChemSusChem; 2018 Jan; 11(1):320-326. PubMed ID: 28881436
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photocatalytic Conversion of CO
    Guo Z; Yu F; Yang Y; Leung CF; Ng SM; Ko CC; Cometto C; Lau TC; Robert M
    ChemSusChem; 2017 Oct; 10(20):4009-4013. PubMed ID: 28840967
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.
    Laurenczy G
    Chimia (Aarau); 2011; 65(9):663-6. PubMed ID: 22026175
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multifunctional, defect-engineered metal-organic frameworks with ruthenium centers: sorption and catalytic properties.
    Kozachuk O; Luz I; Llabrés i Xamena FX; Noei H; Kauer M; Albada HB; Bloch ED; Marler B; Wang Y; Muhler M; Fischer RA
    Angew Chem Int Ed Engl; 2014 Jul; 53(27):7058-62. PubMed ID: 24838592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase.
    Schuchmann K; Müller V
    Science; 2013 Dec; 342(6164):1382-5. PubMed ID: 24337298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex.
    Thoi VS; Kornienko N; Margarit CG; Yang P; Chang CJ
    J Am Chem Soc; 2013 Sep; 135(38):14413-24. PubMed ID: 24033186
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rollover cyclometalation pathway in rhodium catalysis: dramatic NHC effects in the C-H bond functionalization.
    Kwak J; Ohk Y; Jung Y; Chang S
    J Am Chem Soc; 2012 Oct; 134(42):17778-88. PubMed ID: 23013604
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conversion of Aldehydes to Branched or Linear Ketones via Regiodivergent Rhodium-Catalyzed Vinyl Bromide Reductive Coupling-Redox Isomerization Mediated by Formate.
    Swyka RA; Shuler WG; Spinello BJ; Zhang W; Lan C; Krische MJ
    J Am Chem Soc; 2019 May; 141(17):6864-6868. PubMed ID: 30998328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.