These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2561389)

  • 41. Chondrogenesis of chick limb mesenchyme in vitro. Effects of prostaglandins on cyclic AMP.
    Biddulph DM; Sawyer LM; Smales WP
    Exp Cell Res; 1984 Jul; 153(1):270-4. PubMed ID: 6329795
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Heparan sulfate proteoglycans including syndecan-3 modulate BMP activity during limb cartilage differentiation.
    Fisher MC; Li Y; Seghatoleslami MR; Dealy CN; Kosher RA
    Matrix Biol; 2006 Jan; 25(1):27-39. PubMed ID: 16226436
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Morphogenetic potential of leg bud mesoderm to express limb-like characteristics in vitro.
    Isokawa K; Krug EL; Fallon JF; Markwald RR
    Prog Clin Biol Res; 1993; 383A():351-60. PubMed ID: 8302908
    [No Abstract]   [Full Text] [Related]  

  • 44. Different roles for fibronectin in the generation of fore and hind limb precartilage condensations.
    Downie SA; Newman SA
    Dev Biol; 1995 Dec; 172(2):519-30. PubMed ID: 8612968
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Limb mesenchymal cells inhibited from undergoing cartilage differentiation by a tumor promoting phorbol ester maintain expression of the homeobox-containing gene Msx1 and fail to exhibit gap junctional communication.
    Ferrari D; Kosher RA; Dealy CN
    Biochem Biophys Res Commun; 1994 Nov; 205(1):429-34. PubMed ID: 7999059
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differential effects of transforming growth factors beta 1, beta 2, beta 3 and beta 5 on chondrogenesis in mouse limb bud mesenchymal cells.
    Chimal-Monroy J; Díaz de León L
    Int J Dev Biol; 1997 Feb; 41(1):91-102. PubMed ID: 9074941
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Changes in the expression of fibroblast growth factor receptors mark distinct stages of chondrogenesis in vitro and during chick limb skeletal patterning.
    Szebenyi G; Savage MP; Olwin BB; Fallon JF
    Dev Dyn; 1995 Dec; 204(4):446-56. PubMed ID: 8601037
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Alcohol promotes in vitro chondrogenesis in embryonic facial mesenchyme.
    Hoffman LM; Kulyk WM
    Int J Dev Biol; 1999 Mar; 43(2):167-74. PubMed ID: 10235393
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of bone-derived chondrogenesis-stimulating activity on embryonic limb mesenchymal cells in vitro.
    Gawande SR; Tuan RS
    Cell Tissue Kinet; 1990 Sep; 23(5):375-90. PubMed ID: 2245438
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nuserum, a synthetic serum replacement, supports chondrogenesis of embryonic chick limb bud mesenchymal cells in micromass culture.
    Wong M; Tuan RS
    In Vitro Cell Dev Biol Anim; 1993 Dec; 29A(12):917-22. PubMed ID: 8167914
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cartilage differentiation in micro-mass cultures of chicken limb buds.
    Hadházy C; Lázló MB; Kostenszky KS
    Acta Morphol Acad Sci Hung; 1982; 30(1):65-78. PubMed ID: 6807057
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Roles of transforming growth factor-alpha and epidermal growth factor in chick limb development.
    Dealy CN; Scranton V; Cheng HC
    Dev Biol; 1998 Oct; 202(1):43-55. PubMed ID: 9758702
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The morphology and hormonal responsiveness of developing skeletal elements in chick limb buds.
    Ballard TA; Biddulph DM
    Am J Anat; 1984 Feb; 169(2):221-36. PubMed ID: 6324568
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Maturation of myogenic and chondrogenic cells in the presomitic mesoderm of the chick embryo.
    George-Weinstein M; Gerhart JV; Foti GJ; Lash JW
    Exp Cell Res; 1994 Apr; 211(2):263-74. PubMed ID: 8143772
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sox9 expression during chondrogenesis in micromass cultures of embryonic limb mesenchyme.
    Kulyk WM; Franklin JL; Hoffman LM
    Exp Cell Res; 2000 Mar; 255(2):327-32. PubMed ID: 10694448
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inhibitory and stimulatory effects of limb ectoderm on in vitro chondrogenesis.
    Solursh M; Reiter RS
    J Exp Zool; 1988 Nov; 248(2):147-54. PubMed ID: 3199092
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Immunohistochemical localization of cyclic AMP during normal and abnormal chick and mouse limb development.
    Elmer WA; Smith MA; Ede DA
    Teratology; 1981 Oct; 24(2):215-23. PubMed ID: 6278668
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development cues in limb bud chondrogenesis.
    Elmer WA
    Coll Relat Res; 1982; 2(3):257-79. PubMed ID: 6295696
    [No Abstract]   [Full Text] [Related]  

  • 59. Effects of cyclic AMP on limb bud chondrogenesis in low cell density culture.
    Hattori T; Ide H
    Exp Cell Res; 1985 Apr; 157(2):371-8. PubMed ID: 2984027
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inhibition of chondrogenesis by retinoic acid in limb mesenchymal cells in vitro: effects on PGE2 and cyclic AMP concentrations.
    Biddulph DM; Dozier MM; Julian NC; Sawyer LM
    Cell Differ Dev; 1988 Sep; 25(1):65-75. PubMed ID: 2848618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.