BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25614028)

  • 1. Genetic and genomic analyses for economically important traits and their applications in molecular breeding of cultured fish.
    Tong J; Sun X
    Sci China Life Sci; 2015 Feb; 58(2):178-86. PubMed ID: 25614028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and application of biological technologies in fish genetic breeding.
    Xu K; Duan W; Xiao J; Tao M; Zhang C; Liu Y; Liu S
    Sci China Life Sci; 2015 Feb; 58(2):187-201. PubMed ID: 25595050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fish biology and biotechnology is the source for sustainable aquaculture.
    Gui JF
    Sci China Life Sci; 2015 Feb; 58(2):121-3. PubMed ID: 25655895
    [No Abstract]   [Full Text] [Related]  

  • 4. Uncovering QTL for resistance and survival time to Philasterides dicentrarchi in turbot (Scophthalmus maximus).
    Rodríguez-Ramilo ST; Fernández J; Toro MA; Bouza C; Hermida M; Fernández C; Pardo BG; Cabaleiro S; Martínez P
    Anim Genet; 2013 Apr; 44(2):149-57. PubMed ID: 22690723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish.
    Mei J; Gui JF
    Sci China Life Sci; 2015 Feb; 58(2):124-36. PubMed ID: 25563981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research.
    ; Abdelrahman H; ElHady M; Alcivar-Warren A; Allen S; Al-Tobasei R; Bao L; Beck B; Blackburn H; Bosworth B; Buchanan J; Chappell J; Daniels W; Dong S; Dunham R; Durland E; Elaswad A; Gomez-Chiarri M; Gosh K; Guo X; Hackett P; Hanson T; Hedgecock D; Howard T; Holland L; Jackson M; Jin Y; Khalil K; Kocher T; Leeds T; Li N; Lindsey L; Liu S; Liu Z; Martin K; Novriadi R; Odin R; Palti Y; Peatman E; Proestou D; Qin G; Reading B; Rexroad C; Roberts S; Salem M; Severin A; Shi H; Shoemaker C; Stiles S; Tan S; Tang KF; Thongda W; Tiersch T; Tomasso J; Prabowo WT; Vallejo R; van der Steen H; Vo K; Waldbieser G; Wang H; Wang X; Xiang J; Yang Y; Yant R; Yuan Z; Zeng Q; Zhou T
    BMC Genomics; 2017 Feb; 18(1):191. PubMed ID: 28219347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using genetic mapping and genomics approaches in understanding and improving drought tolerance in pearl millet.
    Yadav RS; Sehgal D; Vadez V
    J Exp Bot; 2011 Jan; 62(2):397-408. PubMed ID: 20819788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential of Genome Editing to Improve Aquaculture Breeding and Production.
    Gratacap RL; Wargelius A; Edvardsen RB; Houston RD
    Trends Genet; 2019 Sep; 35(9):672-684. PubMed ID: 31331664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimum contribution selection using traditional best linear unbiased prediction and genomic breeding values in aquaculture breeding schemes.
    Nielsen HM; Sonesson AK; Meuwissen TH
    J Anim Sci; 2011 Mar; 89(3):630-8. PubMed ID: 21036937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current and future assisted reproductive technologies for fish species.
    Weber GM; Lee CS
    Adv Exp Med Biol; 2014; 752():33-76. PubMed ID: 24170354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mapping and breeding with microsatellite markers.
    Lightfoot DA; Iqbal MJ
    Methods Mol Biol; 2013; 1006():297-317. PubMed ID: 23546799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical efficiency of multiple-trait quantitative trait loci-assisted selection.
    Togashi K; Lin CY
    J Anim Breed Genet; 2010 Feb; 127(1):53-63. PubMed ID: 20074187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Current status and future perspective of genetic linkage mapping in aquaculture species].
    Yue ZQ; Kong J; Dai JX
    Yi Chuan; 2004 Jan; 26(1):97-102. PubMed ID: 15626676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular advances in QTL discovery and application in pig breeding.
    Ernst CW; Steibel JP
    Trends Genet; 2013 Apr; 29(4):215-24. PubMed ID: 23498076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative genomics in teleost species: Knowledge transfer by linking the genomes of model and non-model fish species.
    Sarropoulou E; Fernandes JM
    Comp Biochem Physiol Part D Genomics Proteomics; 2011 Mar; 6(1):92-102. PubMed ID: 20961822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of quantitative trait loci affecting milk production, health, and reproductive traits in Holstein cattle.
    Ashwell MS; Heyen DW; Sonstegard TS; Van Tassell CP; Da Y; VanRaden PM; Ron M; Weller JI; Lewin HA
    J Dairy Sci; 2004 Feb; 87(2):468-75. PubMed ID: 14762090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in cereal genomics and applications in crop breeding.
    Varshney RK; Hoisington DA; Tyagi AK
    Trends Biotechnol; 2006 Nov; 24(11):490-9. PubMed ID: 16956681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fish genome manipulation and directional breeding.
    Ye D; Zhu Z; Sun Y
    Sci China Life Sci; 2015 Feb; 58(2):170-7. PubMed ID: 25614029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fifteen years of quantitative trait loci studies in fish: challenges and future directions.
    Ashton DT; Ritchie PA; Wellenreuther M
    Mol Ecol; 2017 Mar; 26(6):1465-1476. PubMed ID: 28001319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crop management impacts the efficiency of quantitative trait loci (QTL) detection and use: case study of fruit load×QTL interactions.
    Kromdijk J; Bertin N; Heuvelink E; Molenaar J; de Visser PH; Marcelis LF; Struik PC
    J Exp Bot; 2014 Jan; 65(1):11-22. PubMed ID: 24227339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.