BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 25614581)

  • 1. In vitro activation of dibromoacetonitrile to cyanide by myeloperoxidase.
    Al-Abbasi FA
    Toxicol Ind Health; 2016 Aug; 32(8):1478-1485. PubMed ID: 25614581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myeloperoxidase-catalyzed oxidation of chloroacetonitrile to cyanide.
    Abdel-Naim AB; Mohamadin AM
    Toxicol Lett; 2004 Feb; 146(3):249-57. PubMed ID: 14687762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro activation of dibromoacetonitrile to cyanide: role of xanthine oxidase.
    Mohamadin AM; Abdel-Naim AB
    Arch Toxicol; 2003 Feb; 77(2):86-93. PubMed ID: 12590360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactoperoxidase catalyzes in vitro activation of acrylonitrile to cyanide.
    Nasralla SN; Ghoneim AI; Khalifa AE; Gad MZ; Abdel-Naim AB
    Toxicol Lett; 2009 Dec; 191(2-3):347-52. PubMed ID: 19825401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular adverse actions of dibromoacetonitrile, a by-product in water bacterial control, at sublethal levels in rat thymocytes.
    Kishida T; Akiyoshi K; Erdenedalai E; Enhetomuru A; Imai S; Oyama Y
    Toxicol In Vitro; 2018 Sep; 51():145-149. PubMed ID: 29802943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Report- Role of prostaglandin H synthase in activation of acrylonitrile to cyanide.
    Al-Abbasi FA; Esmat A; Mohamadin AM; Abdel-Naim AB
    Pak J Pharm Sci; 2018 Jul; 31(4):1431-1435. PubMed ID: 30033430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative injury induced by drinking water disinfection by-products dibromoacetonitrile and dichloroacetonitrile in mouse hippocampal neuronal cells: The protective effect of N-acetyl-L-cysteine.
    Li F; Zhou J; Zhu X; Lu R; Ye Y; Wang S; Xing G; Shen H
    Toxicol Lett; 2022 Jul; 365():61-73. PubMed ID: 35724848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dibromoacetonitrile-induced protein oxidation and inhibition of proteasomal activity in rat glioma cells.
    Ahmed AE; Jacob S; Nagy AA; Abdel-Naim AB
    Toxicol Lett; 2008 Jun; 179(1):29-33. PubMed ID: 18485629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of myocardial dihydrolipoamide dehydrogenase by myeloperoxidase systems: effect of halides, nitrite and thiol compounds.
    Gutierrez-Correa J; Stoppani AO
    Free Radic Res; 1999 Feb; 30(2):105-17. PubMed ID: 10193578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of guaiacol by myeloperoxidase: a two-electron-oxidized guaiacol transient species as a mediator of NADPH oxidation.
    Capeillère-Blandin C
    Biochem J; 1998 Dec; 336 ( Pt 2)(Pt 2):395-404. PubMed ID: 9820817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential protective effect of taurine against dibromoacetonitrile-induced neurotoxicity in rats.
    Sayed RH; Salem HA; El-Sayeh BM
    Environ Toxicol Pharmacol; 2012 Nov; 34(3):849-57. PubMed ID: 23021633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myeloperoxidase-catalyzed redox-cycling of phenol promotes lipid peroxidation and thiol oxidation in HL-60 cells.
    Goldman R; Claycamp GH; Sweetland MA; Sedlov AV; Tyurin VA; Kisin ER; Tyurina YY; Ritov VB; Wenger SL; Grant SG; Kagan VE
    Free Radic Biol Med; 1999 Nov; 27(9-10):1050-63. PubMed ID: 10569638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A kinetic study of the reaction between human myeloperoxidase, hydroperoxides and cyanide. Inhibition by chloride and thiocyanate.
    Bolscher BG; Wever R
    Biochim Biophys Acta; 1984 Jul; 788(1):1-10. PubMed ID: 6331509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible role of hydroxyl radicals in the oxidation of dichloroacetonitrile by Fenton-like reaction.
    Mohamadin AM
    J Inorg Biochem; 2001 Mar; 84(1-2):97-105. PubMed ID: 11330486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The drinking water contaminant dibromoacetonitrile delays G1-S transition and suppresses Chk1 activation at broken replication forks.
    Caspari T; Dyer J; Fenner N; Dunn C; Freeman C
    Sci Rep; 2017 Oct; 7(1):12730. PubMed ID: 28986587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into thiocyanate oxidation by human myeloperoxidase.
    Schlorke D; Flemmig J; Gau J; Furtmüller PG; Obinger C; Arnhold J
    J Inorg Biochem; 2016 Sep; 162():117-126. PubMed ID: 27343172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of Trypanosoma cruzi dihydrolipoamide dehydrogenase by leukocyte myeloperoxidase systems: role of hypochloride and nitrite related radicals.
    Gutiérrez-Correa J; Krauth-Siegel RL; Stoppani AO
    Rev Argent Microbiol; 2000; 32(3):136-43. PubMed ID: 11008705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of allylnitrile to cyanide: in vitro studies.
    Farooqui MY; Ybarra B; Piper J
    Res Commun Chem Pathol Pharmacol; 1993 Sep; 81(3):355-68. PubMed ID: 8235069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen cyanide and cyanogen chloride formation by the myeloperoxidase-H2O2-Cl- system.
    Zgiczyński JM; Stelmaszyńska T
    Biochim Biophys Acta; 1979 Apr; 567(2):309-14. PubMed ID: 36154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single and combined effects of selected haloacetonitriles in a human-derived hepatoma line.
    Lu G; Qin D; Wang Y; Liu J; Chen W
    Ecotoxicol Environ Saf; 2018 Nov; 163():417-426. PubMed ID: 30071462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.