These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 25614797)
1. Non-serotinous woody plants behave as aerial seed bank species when a late-summer wildfire coincides with a mast year. Pounden E; Greene DF; Michaletz ST Ecol Evol; 2014 Oct; 4(19):3830-40. PubMed ID: 25614797 [TBL] [Abstract][Full Text] [Related]
2. The propagule doesn't fall far from the tree, especially after short-interval, high-severity fire. Gill NS; Hoecker TJ; Turner MG Ecology; 2021 Jan; 102(1):e03194. PubMed ID: 32910502 [TBL] [Abstract][Full Text] [Related]
3. Seed release in serotinous lodgepole pine forests after mountain pine beetle outbreak. Teste FP; Lieffers VJ; Landhausser SM Ecol Appl; 2011 Jan; 21(1):150-62. PubMed ID: 21516894 [TBL] [Abstract][Full Text] [Related]
5. Cone allometry and seed protection from fire are similar in serotinous and nonserotinous conifers. Greene DF; Kane JM; Pounden E; Michaletz ST New Phytol; 2024 Apr; 242(1):93-106. PubMed ID: 38375897 [TBL] [Abstract][Full Text] [Related]
6. It takes a few to tango: changing climate and fire regimes can cause regeneration failure of two subalpine conifers. Hansen WD; Braziunas KH; Rammer W; Seidl R; Turner MG Ecology; 2018 Apr; 99(4):966-977. PubMed ID: 29464688 [TBL] [Abstract][Full Text] [Related]
7. Viability of forest floor and canopy seed banks in Pinus contorta var. latifolia (Pinaceae) forests after a mountain pine beetle outbreak. Teste FP; Lieffers VJ; Landhäusser SM Am J Bot; 2011 Apr; 98(4):630-7. PubMed ID: 21613163 [TBL] [Abstract][Full Text] [Related]
8. Regeneration strategies and forest resilience to changing fire regimes: Insights from a Goldilocks model. Ramiadantsoa T; Ratajczak Z; Turner MG Ecology; 2023 Jun; 104(6):e4041. PubMed ID: 36964987 [TBL] [Abstract][Full Text] [Related]
9. Maintenance costs of serotiny in a variably serotinous pine: The role of water supply. Martín-Sanz RC; Callejas-Díaz M; Tonnabel J; Climent JM PLoS One; 2017; 12(7):e0181648. PubMed ID: 28732015 [TBL] [Abstract][Full Text] [Related]
10. Landscape-scale eco-evolutionary dynamics: selection by seed predators and fire determine a major reproductive strategy. Talluto MV; Benkman CW Ecology; 2013 Jun; 94(6):1307-16. PubMed ID: 23923494 [TBL] [Abstract][Full Text] [Related]
11. Jack pine of all trades: Deciphering intraspecific variability of a key adaptive trait at the rear edge of a widespread fire-embracing North American conifer. Pelletier E; de Lafontaine G Am J Bot; 2023 Feb; 110(2):e16111. PubMed ID: 36462149 [TBL] [Abstract][Full Text] [Related]
12. Strong dispersal limitation in postfire regeneration of Baker cypress, a rare serotinous conifer. McNamara BA; Greene DF; Kane JM Am J Bot; 2019 Dec; 106(12):1566-1574. PubMed ID: 31769003 [TBL] [Abstract][Full Text] [Related]
13. Fire after a mast year triggers mass recruitment of slender mulga (Acacia aptaneura), a desert shrub with heat-stimulated germination. Wright BR; Fensham RJ Am J Bot; 2017 Oct; 104(10):1474-1483. PubMed ID: 29885224 [TBL] [Abstract][Full Text] [Related]
14. Do cone age and heating mode determine the opening of serotinous cones during wildfires? A new bench scale approach applied to Pinus halepensis Mill. Madrigal J; Martín A; Chambel R; Guijarro M; Hernando C; Callejas M; Espinosa J; Climent J Sci Total Environ; 2021 Apr; 763():144222. PubMed ID: 33383513 [TBL] [Abstract][Full Text] [Related]
15. Does post-fire plant regeneration mode affect the germination response to fire-related cues? Ne'eman G; Ne'eman R; Keith DA; Whelan RJ Oecologia; 2009 Mar; 159(3):483-92. PubMed ID: 19083016 [TBL] [Abstract][Full Text] [Related]
16. Seed release by a serotinous pine in the absence of fire: implications for invasion into temperate regions. Wyse SV; Brown JE; Hulme PE AoB Plants; 2019 Dec; 11(6):plz077. PubMed ID: 31844510 [TBL] [Abstract][Full Text] [Related]
17. Fire structures pine serotiny at different scales. Hernández-Serrano A; Verdú M; González-Martínez SC; Pausas JG Am J Bot; 2013 Dec; 100(12):2349-56. PubMed ID: 24222682 [TBL] [Abstract][Full Text] [Related]
18. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest. Kueppers LM; Conlisk E; Castanha C; Moyes AB; Germino MJ; de Valpine P; Torn MS; Mitton JB Glob Chang Biol; 2017 Jun; 23(6):2383-2395. PubMed ID: 27976819 [TBL] [Abstract][Full Text] [Related]
19. The functional response of a hoarding seed predator to mast seeding. Fletcher QE; Boutin S; Lane JE; LaMontagne JM; McAdam AG; Krebs CJ; Humphries MM Ecology; 2010 Sep; 91(9):2673-83. PubMed ID: 20957961 [TBL] [Abstract][Full Text] [Related]
20. An assessment of temporal variability in mast seeding of North American Pinaceae. LaMontagne JM; Redmond MD; Wion AP; Greene DF Philos Trans R Soc Lond B Biol Sci; 2021 Dec; 376(1839):20200373. PubMed ID: 34657469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]