These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 25614975)

  • 1. Oligomeric complexes of some heteroaromatic ligands and aromatic diamines with rhodium and molybdenum tetracarboxylates: 13C and 15N CPMAS NMR and density functional theory studies.
    Leniak A; Kamieński B; Jaźwiński J
    Magn Reson Chem; 2015 May; 53(5):344-52. PubMed ID: 25614975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adducts of rhodium(II) tetraacetate with some nitrogenous organic ligands: application of natural abundance 15N and 13C CPMAS NMR spectroscopy.
    Jaźwiński J; Kamieński B
    Solid State Nucl Magn Reson; 2007 Oct; 32(2):25-33. PubMed ID: 17697766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymeric adducts of rhodium(II) tetraacetate with aliphatic diamines: natural abundance 13C and 15N CPMAS NMR investigations.
    Jaźwiński J; Kamieński B; Sadlej A
    Magn Reson Chem; 2013 Dec; 51(12):788-94. PubMed ID: 24123364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complexation of rhodium(II) tetracarboxylates with aliphatic diamines in solution: 1H and 13C NMR and DFT investigations.
    Jaźwiński J; Sadlej A
    Magn Reson Chem; 2013 Oct; 51(10):662-70. PubMed ID: 23943201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adducts of nitrogenous ligands with rhodium(II) tetracarboxylates and tetraformamidinate: NMR spectroscopy and density functional theory calculations.
    Cmoch P; Głaszczka R; Jaźwiński J; Kamieński B; Senkara E
    Magn Reson Chem; 2014 Mar; 52(3):61-8. PubMed ID: 24327228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 103Rh NMR chemical shifts in organometallic complexes: a combined experimental and density functional study.
    Orian L; Bisello A; Santi S; Ceccon A; Saielli G
    Chemistry; 2004 Aug; 10(16):4029-40. PubMed ID: 15316995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1H, 13C and 15N NMR coordination shifts in gold(III), cobalt(III), rhodium(III) chloride complexes with pyridine, 2,2'-bipyridine and 1,10-phenanthroline.
    Pazderski L; Tousek J; Sitkowski J; Kozerski L; Marek R; Szłyk E
    Magn Reson Chem; 2007 Jan; 45(1):24-36. PubMed ID: 17048265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with methyl and phenyl derivatives of 2,2'-bipyridine and 1,10-phenanthroline.
    Pazderski L; Tousek J; Sitkowski J; Kozerski L; Szłyk E
    Magn Reson Chem; 2007 Dec; 45(12):1045-58. PubMed ID: 18044804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complexation in situ of 1-methylpiperidine, 1,2-dimethylpyrrolidin, and 1,2-dimethylpiperidine with rhodium(II) tetracarboxylates: Nuclear magnetic resonance spectroscopy, chiral recognition, and density functional theory studies.
    Sadlej A; Jaźwiński J
    Chirality; 2021 Oct; 33(10):660-674. PubMed ID: 34425025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1H, 13C and 15N NMR studies on adducts formation of rhodium(II) tetraacylates with some azoles in CDCl3 solution.
    Bocian W; Jaźwiński J; Sadlej A
    Magn Reson Chem; 2008 Feb; 46(2):156-65. PubMed ID: 18088083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with quinoline, isoquinoline, and 2,2'-biquinoline.
    Pazderski L; Tousek J; Sitkowski J; Kozerski L; Szłyk E
    Magn Reson Chem; 2007 Dec; 45(12):1059-71. PubMed ID: 18044805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-state (15)N CPMAS NMR and computational analysis of ligand hapticity in rhodium(η-diene) poly(pyrazolyl)borate complexes.
    Pettinari R; Pettinari C; Marchetti F; Gobetto R; Nervi C; Chierotti MR; Chan EJ; Skelton BW; White AH
    Inorg Chem; 2010 Dec; 49(23):11205-15. PubMed ID: 20979369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral recognition of Schiff bases by 15N NMR spectroscopy in the presence of a dirhodium complex. Deuterium isotope effect on 15N chemical shift of the optically active Schiff bases and their dirhodium tetracarboxylate adducts.
    Rozwadowski Z; Nowak-Wydra B
    Magn Reson Chem; 2008 Oct; 46(10):974-8. PubMed ID: 18666208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic structures of six-coordinate ferric porphyrin complexes with weak axial ligands: usefulness of 13C NMR chemical shifts.
    Hoshino A; Ohgo Y; Nakamura M
    Inorg Chem; 2005 Oct; 44(21):7333-44. PubMed ID: 16212360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Platinum-modified adenines: unprecedented protonation behavior revealed by NMR spectroscopy and relativistic density-functional theory calculations.
    Vícha J; Demo G; Marek R
    Inorg Chem; 2012 Feb; 51(3):1371-9. PubMed ID: 22260420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indirect nuclear spin-spin coupling constants in 1,2-diboretane-3-ylidene, a homoaromatic system with pi and sigma 3c/2e bonds. Comparison of experimental data with calculations using density functional theory (DFT).
    Wrackmeyer B; Berndt A
    Magn Reson Chem; 2004 Jun; 42(6):490-5. PubMed ID: 15137041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing multiple effects on 15N, 13C alpha, 13C beta, and 13C' chemical shifts in peptides using density functional theory.
    Xu XP; Case DA
    Biopolymers; 2002 Dec; 65(6):408-23. PubMed ID: 12434429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molybdenum(VI) dioxo complexes with tridentate phenolate ligands.
    Judmaier ME; Wallner A; Stipicic GN; Kirchner K; Baumgartner J; Belaj F; Mösch-Zanetti NC
    Inorg Chem; 2009 Nov; 48(21):10211-21. PubMed ID: 19788253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic diamine rhodium complex catalyzed reductive N-heterocyclization of 2-nitrovinylarenes.
    Okuro K; Gurnham J; Alper H
    J Org Chem; 2011 Jun; 76(11):4715-20. PubMed ID: 21542601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.
    Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP
    J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.