These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 25615040)

  • 1. Velocity autocorrelation of a free particle driven by a Mittag-Leffler noise: fractional dynamics and temporal behaviors.
    Viñales AD; Paissan GH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062103. PubMed ID: 25615040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise.
    Viñales AD; Wang KG; Despósito MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011101. PubMed ID: 19658647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized Langevin equation with multiplicative noise: temporal behavior of the autocorrelation functions.
    Mankin R; Laas K; Sauga A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061131. PubMed ID: 21797326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subdiffusive behavior in a trapping potential: mean square displacement and velocity autocorrelation function.
    Despósito MA; Viñales AD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021111. PubMed ID: 19792081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized Langevin dynamics of a nanoparticle using a finite element approach: thermostating with correlated noise.
    Uma B; Swaminathan TN; Ayyaswamy PS; Eckmann DM; Radhakrishnan R
    J Chem Phys; 2011 Sep; 135(11):114104. PubMed ID: 21950847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous diffusion: exact solution of the generalized Langevin equation for harmonically bounded particle.
    Viñales AD; Despósito MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016111. PubMed ID: 16486220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous diffusion induced by a Mittag-Leffler correlated noise.
    Viñales AD; Despósito MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):042102. PubMed ID: 17500938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillations and negative velocity autocorrelation emerging from a Brownian particle model with hydrodynamic interactions.
    Viñales AD; Camuyrano M; Paissan GH
    Phys Rev E; 2020 May; 101(5-1):052140. PubMed ID: 32575187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superdiffusion induced by a long-correlated external random force.
    Despósito MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061114. PubMed ID: 22304047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different diffusive regimes, generalized Langevin and diffusion equations.
    Tateishi AA; Lenzi EK; da Silva LR; Ribeiro HV; Picoli S; Mendes RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011147. PubMed ID: 22400552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of noise and detector sensitivity on a dynamical process: inverse power law and Mittag-Leffler interevent time survival probabilities.
    Pramukkul P; Svenkeson A; Grigolini P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022107. PubMed ID: 25353422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Memory effects for a trapped Brownian particle in viscoelastic shear flows.
    Mankin R; Laas K; Lumi N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042142. PubMed ID: 24229150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MODELING OF A NANOPARTICLE MOTION IN A NEWTONIAN FLUID: A COMPARISON BETWEEN FLUCTUATING HYDRODYNAMICS AND GENERALIZED LANGEVIN PROCEDURES.
    Uma B; Ayyaswamy PS; Radhakrishnan R; Eckmann DM
    Proc ASME Micro Nanoscale Heat Mass Transf Int Conf (2012); 2012 Mar; 2012():735-743. PubMed ID: 25621317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A globally Mittag-Leffler bounded high-gain observer for systems with unknown dynamics and noisy measurements.
    Martínez-Guerra R; Flores-Flores JP; Govea-Vargas A
    ISA Trans; 2022 Sep; 128(Pt B):336-345. PubMed ID: 34861987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple time scale dynamics of distance fluctuations in a semiflexible polymer: a one-dimensional generalized Langevin equation treatment.
    Debnath P; Min W; Xie XS; Cherayil BJ
    J Chem Phys; 2005 Nov; 123(20):204903. PubMed ID: 16351313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mittag-Leffler stability of fractional-order neural networks in the presence of generalized piecewise constant arguments.
    Wu A; Liu L; Huang T; Zeng Z
    Neural Netw; 2017 Jan; 85():118-127. PubMed ID: 27814463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical exponent of the fractional Langevin equation.
    Burov S; Barkai E
    Phys Rev Lett; 2008 Feb; 100(7):070601. PubMed ID: 18352535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mean value theorem and Taylor's theorem for fractional derivatives with Mittag-Leffler kernel.
    Fernandez A; Baleanu D
    Adv Differ Equ; 2018; 2018(1):86. PubMed ID: 31258614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust generalized Mittag-Leffler synchronization of fractional order neural networks with discontinuous activation and impulses.
    Pratap A; Raja R; Sowmiya C; Bagdasar O; Cao J; Rajchakit G
    Neural Netw; 2018 Jul; 103():128-141. PubMed ID: 29677558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subdiffusive-Brownian crossover in membrane proteins: a generalized Langevin equation-based approach.
    Di Cairano L; Stamm B; Calandrini V
    Biophys J; 2021 Nov; 120(21):4722-4737. PubMed ID: 34592261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.