These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 25615061)
1. Optimal performance of endoreversible quantum refrigerators. Correa LA; Palao JP; Adesso G; Alonso D Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062124. PubMed ID: 25615061 [TBL] [Abstract][Full Text] [Related]
2. Cooling Cycle Optimization for a Vuilleumier Refrigerator. Paul R; Khodja A; Fischer A; Hoffmann KH Entropy (Basel); 2021 Nov; 23(12):. PubMed ID: 34945868 [TBL] [Abstract][Full Text] [Related]
3. Quantum heat engines and refrigerators: continuous devices. Kosloff R; Levy A Annu Rev Phys Chem; 2014; 65():365-93. PubMed ID: 24689798 [TBL] [Abstract][Full Text] [Related]
4. Optimal low symmetric dissipation Carnot engines and refrigerators. de Tomás C; Hernández AC; Roco JM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010104. PubMed ID: 22400500 [TBL] [Abstract][Full Text] [Related]
5. Current fluctuations in quantum absorption refrigerators. Segal D Phys Rev E; 2018 May; 97(5-1):052145. PubMed ID: 29906995 [TBL] [Abstract][Full Text] [Related]
6. Performance bound for quantum absorption refrigerators. Correa LA; Palao JP; Adesso G; Alonso D Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042131. PubMed ID: 23679395 [TBL] [Abstract][Full Text] [Related]
7. Minimal universal quantum heat machine. Gelbwaser-Klimovsky D; Alicki R; Kurizki G Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012140. PubMed ID: 23410316 [TBL] [Abstract][Full Text] [Related]
8. Finite-power performance of quantum heat engines in linear response. Liu Q; He J; Ma Y; Wang J Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858 [TBL] [Abstract][Full Text] [Related]
9. Unified trade-off optimization for general heat devices with nonisothermal processes. Long R; Liu W Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042127. PubMed ID: 25974458 [TBL] [Abstract][Full Text] [Related]
10. Maximum efficiency of absorption refrigerators at arbitrary cooling power. Ye Z; Holubec V Phys Rev E; 2021 May; 103(5-1):052125. PubMed ID: 34134287 [TBL] [Abstract][Full Text] [Related]
11. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators. Gelbwaser-Klimovsky D; Kurizki G Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022102. PubMed ID: 25215684 [TBL] [Abstract][Full Text] [Related]
12. Energetics of a simple microscopic heat engine. Asfaw M; Bekele M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056109. PubMed ID: 16383690 [TBL] [Abstract][Full Text] [Related]
13. Quantum refrigerators and the third law of thermodynamics. Levy A; Alicki R; Kosloff R Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061126. PubMed ID: 23005070 [TBL] [Abstract][Full Text] [Related]
14. Coupled heat devices in linear irreversible thermodynamics. Jiménez de Cisneros B; Hernández AC Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041127. PubMed ID: 18517598 [TBL] [Abstract][Full Text] [Related]
15. Three-terminal quantum-dot refrigerators. Zhang Y; Lin G; Chen J Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052118. PubMed ID: 26066130 [TBL] [Abstract][Full Text] [Related]
16. Endoreversible quantum heat engines in the linear response regime. Wang H; He J; Wang J Phys Rev E; 2017 Jul; 96(1-1):012152. PubMed ID: 29347192 [TBL] [Abstract][Full Text] [Related]
17. Maximum efficiency of low-dissipation refrigerators at arbitrary cooling power. Holubec V; Ye Z Phys Rev E; 2020 May; 101(5-1):052124. PubMed ID: 32575339 [TBL] [Abstract][Full Text] [Related]
18. Performance of quantum Otto refrigerators with squeezing. Long R; Liu W Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062137. PubMed ID: 26172691 [TBL] [Abstract][Full Text] [Related]
19. Constitutive relation for nonlinear response and universality of efficiency at maximum power for tight-coupling heat engines. Sheng S; Tu ZC Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022136. PubMed ID: 25768487 [TBL] [Abstract][Full Text] [Related]
20. Quantum dynamical framework for Brownian heat engines. Agarwal GS; Chaturvedi S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012130. PubMed ID: 23944437 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]