These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
398 related articles for article (PubMed ID: 25615172)
1. Turing pattern dynamics in an activator-inhibitor system with superdiffusion. Zhang L; Tian C Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062915. PubMed ID: 25615172 [TBL] [Abstract][Full Text] [Related]
2. Turing Pattern Formation in a Semiarid Vegetation Model with Fractional-in-Space Diffusion. Tian C Bull Math Biol; 2015 Nov; 77(11):2072-85. PubMed ID: 26511752 [TBL] [Abstract][Full Text] [Related]
3. Turing pattern formation in fractional activator-inhibitor systems. Henry BI; Langlands TA; Wearne SL Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026101. PubMed ID: 16196638 [TBL] [Abstract][Full Text] [Related]
4. Diffusive instabilities in a hyperbolic activator-inhibitor system with superdiffusion. Mvogo A; Macías-Díaz JE; Kofané TC Phys Rev E; 2018 Mar; 97(3-1):032129. PubMed ID: 29776049 [TBL] [Abstract][Full Text] [Related]
5. Turing pattern formation in the Brusselator system with nonlinear diffusion. Gambino G; Lombardo MC; Sammartino M; Sciacca V Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042925. PubMed ID: 24229267 [TBL] [Abstract][Full Text] [Related]
7. Turing pattern dynamics and adaptive discretization for a super-diffusive Lotka-Volterra model. Bendahmane M; Ruiz-Baier R; Tian C J Math Biol; 2016 May; 72(6):1441-65. PubMed ID: 26219250 [TBL] [Abstract][Full Text] [Related]
8. Turing-Hopf bifurcation analysis in a superdiffusive predator-prey model. Liu B; Wu R; Chen L Chaos; 2018 Nov; 28(11):113118. PubMed ID: 30501205 [TBL] [Abstract][Full Text] [Related]
9. Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reaction-diffusion system. Just W; Bose M; Bose S; Engel H; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026219. PubMed ID: 11497689 [TBL] [Abstract][Full Text] [Related]
10. Patterns induced by super cross-diffusion in a predator-prey system with Michaelis-Menten type harvesting. Liu B; Wu R; Chen L Math Biosci; 2018 Apr; 298():71-79. PubMed ID: 29471009 [TBL] [Abstract][Full Text] [Related]
11. Stability of Turing patterns in the Brusselator model. Peña B; Pérez-García C Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056213. PubMed ID: 11736060 [TBL] [Abstract][Full Text] [Related]
12. Stochastic Turing patterns: analysis of compartment-based approaches. Cao Y; Erban R Bull Math Biol; 2014 Dec; 76(12):3051-69. PubMed ID: 25421150 [TBL] [Abstract][Full Text] [Related]
13. Turing patterns beyond hexagons and stripes. Yang L; Dolnik M; Zhabotinsky AM; Epstein IR Chaos; 2006 Sep; 16(3):037114. PubMed ID: 17014248 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of reaction-diffusion patterns controlled by asymmetric nonlocal coupling as a limiting case of differential advection. Siebert J; Alonso S; Bär M; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052909. PubMed ID: 25353863 [TBL] [Abstract][Full Text] [Related]
15. Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model. Tzou JC; Ma YP; Bayliss A; Matkowsky BJ; Volpert VA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022908. PubMed ID: 23496592 [TBL] [Abstract][Full Text] [Related]
16. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations. Schüler D; Alonso S; Torcini A; Bär M Chaos; 2014 Dec; 24(4):043142. PubMed ID: 25554062 [TBL] [Abstract][Full Text] [Related]
17. Transverse instabilities in chemical Turing patterns of stripes. Peña B; Pérez-García C; Sanz-Anchelergues A; Míguez DG; Muñuzuri AP Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056206. PubMed ID: 14682870 [TBL] [Abstract][Full Text] [Related]
18. Chemical pattern formation induced by a shear flow in a two-layer model. Vasquez DA; Meyer J; Suedhoff H Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036109. PubMed ID: 18851107 [TBL] [Abstract][Full Text] [Related]
19. Stripe-hexagon competition in forced pattern-forming systems with broken up-down symmetry. Peter R; Hilt M; Ziebert F; Bammert J; Erlenkämper C; Lorscheid N; Weitenberg C; Winter A; Hammele M; Zimmermann W Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046212. PubMed ID: 15903775 [TBL] [Abstract][Full Text] [Related]