These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 25615187)
1. Acoustic interaction forces between small particles in an ideal fluid. Silva GT; Bruus H Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063007. PubMed ID: 25615187 [TBL] [Abstract][Full Text] [Related]
2. Generalized potential theory for close-range acoustic interactions in the Rayleigh limit. Sepehrirhnama S; Lim KM Phys Rev E; 2020 Oct; 102(4-1):043307. PubMed ID: 33212642 [TBL] [Abstract][Full Text] [Related]
3. Acoustic Interaction Forces and Torques Acting on Suspended Spheres in an Ideal Fluid. Lopes JH; Azarpeyvand M; Silva GT IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jan; 63(1):186-97. PubMed ID: 26529753 [TBL] [Abstract][Full Text] [Related]
4. Acoustic radiation force and torque exerted on a small viscoelastic particle in an ideal fluid. Leão-Neto JP; Silva GT Ultrasonics; 2016 Sep; 71():1-11. PubMed ID: 27254398 [TBL] [Abstract][Full Text] [Related]
5. Potential-well model in acoustic tweezers. Kang ST; Yeh CK IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720 [TBL] [Abstract][Full Text] [Related]
6. Axial acoustic radiation force of progressive cylindrical diverging waves on a rigid and a soft cylinder immersed in an ideal compressible fluid. Mitri FG; Fellah ZE Ultrasonics; 2011 Jul; 51(5):523-6. PubMed ID: 21339000 [TBL] [Abstract][Full Text] [Related]
7. Mean force on a finite-sized spherical particle due to an acoustic field in a viscous compressible medium. Annamalai S; Balachandar S; Parmar MK Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053008. PubMed ID: 25353881 [TBL] [Abstract][Full Text] [Related]
8. Experimental study on inter-particle acoustic forces. Garcia-Sabaté A; Castro A; Hoyos M; González-Cinca R J Acoust Soc Am; 2014 Mar; 135(3):1056-63. PubMed ID: 24606249 [TBL] [Abstract][Full Text] [Related]
9. Acoustic radiation force and torque on an absorbing compressible particle in an inviscid fluid. Silva GT J Acoust Soc Am; 2014 Nov; 136(5):2405-13. PubMed ID: 25373943 [TBL] [Abstract][Full Text] [Related]
10. The directional sensitivity of the acoustic radiation force to particle diameter. Ran W; Saylor JR J Acoust Soc Am; 2015 Jun; 137(6):3288-98. PubMed ID: 26093419 [TBL] [Abstract][Full Text] [Related]
11. Forces acting on a small particle in an acoustical field in a thermoviscous fluid. Karlsen JT; Bruus H Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043010. PubMed ID: 26565335 [TBL] [Abstract][Full Text] [Related]
12. Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves. Johnson KA; Vormohr HR; Doinikov AA; Bouakaz A; Shields CW; López GP; Dayton PA Phys Rev E; 2016 May; 93(5):053109. PubMed ID: 27300980 [TBL] [Abstract][Full Text] [Related]
13. Acoustic radiation force exerted on a small spheroidal rigid particle by a beam of arbitrary wavefront: Examples of traveling and standing plane waves. Silva GT; Drinkwater BW J Acoust Soc Am; 2018 Nov; 144(5):EL453. PubMed ID: 30522303 [TBL] [Abstract][Full Text] [Related]
14. Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere. Mitri FG Ultrasonics; 2009 Dec; 49(8):794-8. PubMed ID: 19692103 [TBL] [Abstract][Full Text] [Related]
15. Computing the acoustic radiation force exerted on a sphere using the translational addition theorem. Silva GT; Baggio AL; Lopes JH; Mitri FG IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):576-83. PubMed ID: 25768823 [TBL] [Abstract][Full Text] [Related]
16. Interaction between particles and bubbles driven by ultrasound: Acoustic radiation force on an elastic particle immersed in the ideal fluid near a bubble. Feng K; Wang C; Mo R; Hu J; Li S Ultrason Sonochem; 2020 Oct; 67():105166. PubMed ID: 32454445 [TBL] [Abstract][Full Text] [Related]
17. Acoustic radiation force acting on elastic and viscoelastic spherical shells placed in a plane standing wave field. Mitri FG Ultrasonics; 2005 Aug; 43(8):681-91. PubMed ID: 15982473 [TBL] [Abstract][Full Text] [Related]
18. Numerical study of interparticle radiation force acting on rigid spheres in a standing wave. Sepehrirahnama S; Lim KM; Chau FS J Acoust Soc Am; 2015 May; 137(5):2614-22. PubMed ID: 25994694 [TBL] [Abstract][Full Text] [Related]
19. Dynamical motion of a pair of microparticles at the acoustic pressure nodal plane under the combined effect of axial primary radiation and interparticle forces. Hoque SZ; Nath A; Sen AK J Acoust Soc Am; 2021 Jul; 150(1):307. PubMed ID: 34340505 [TBL] [Abstract][Full Text] [Related]
20. Acoustic tweezing of particles using decaying opposing travelling surface acoustic waves (DOTSAW). Ng JW; Devendran C; Neild A Lab Chip; 2017 Oct; 17(20):3489-3497. PubMed ID: 28929163 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]