These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
589 related articles for article (PubMed ID: 25615196)
21. Anomalous exponents to order epsilon 3 in the rapid-change model of passive scalar advection. Adzhemyan LT; Antonov NV; Barinov VA; Kabrits YS; Vasil'ev AN Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):025303. PubMed ID: 11308533 [TBL] [Abstract][Full Text] [Related]
22. Anomalous scaling of the magnetic field in the compressible Kazantsev-Kraichnan model: two-loop renormalization group analysis. Jurčišinová E; Jurčišin M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):011004. PubMed ID: 23944405 [TBL] [Abstract][Full Text] [Related]
23. Anomalous scaling and large-scale anisotropy in magnetohydrodynamic turbulence: two-loop renormalization-group analysis of the Kazantsev-Kraichnan kinematic model. Antonov NV; Gulitskiy NM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):065301. PubMed ID: 23005154 [TBL] [Abstract][Full Text] [Related]
24. Passive advection of a vector field: Anisotropy, finite correlation time, exact solution, and logarithmic corrections to ordinary scaling. Antonov NV; Gulitskiy NM Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043018. PubMed ID: 26565343 [TBL] [Abstract][Full Text] [Related]
25. Turbulent Prandtl number in a model of passively advected vector field: two-loop renormalization group result. Jurčišinová E; Jurčišin M; Remecký R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):011002. PubMed ID: 23944403 [TBL] [Abstract][Full Text] [Related]
26. Comment on "Turbulent compressible fluid: Renormalization group analysis, scaling regimes, and anomalous scaling of advected scalar fields". Honkonen J Phys Rev E; 2021 Aug; 104(2-2):027101. PubMed ID: 34525592 [TBL] [Abstract][Full Text] [Related]
27. Diffusion in anisotropic fully developed turbulence: Turbulent Prandtl number. Jurčišinová E; Jurčišin M Phys Rev E; 2016 Oct; 94(4-1):043102. PubMed ID: 27841589 [TBL] [Abstract][Full Text] [Related]
28. Amplification of the anomalous scaling in the Kazantsev-Kraichnan model with finite-time correlations and spatial parity violation. Jurčišinová E; Jurčišin M; Remecký R Phys Rev E; 2024 May; 109(5-2):055101. PubMed ID: 38907446 [TBL] [Abstract][Full Text] [Related]
29. Turbulent Prandtl number in the A model of passive vector admixture. Jurčišinová E; Jurčišin M; Remecký R Phys Rev E; 2016 Mar; 93(3):033106. PubMed ID: 27078446 [TBL] [Abstract][Full Text] [Related]
30. Comment on "Two-loop calculation of the turbulent Prandtl number". Jurcisinová E; Jurcisin M; Remecký R Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):028301. PubMed ID: 20866946 [TBL] [Abstract][Full Text] [Related]
31. Turbulent magnetic Prandtl number in kinematic magnetohydrodynamic turbulence: two-loop approximation. Jurčišinová E; Jurčišin M; Remecký R Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046311. PubMed ID: 22181265 [TBL] [Abstract][Full Text] [Related]
32. Anomalous scaling in the anisotropic sectors of the kraichnan model of passive scalar advection. Arad I; L'vov VS; Podivilov E; Procaccia I Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt A):4904-19. PubMed ID: 11089036 [TBL] [Abstract][Full Text] [Related]
33. Anomalous scaling of the magnetic field in the helical Kazantsev-Kraichnan model. Jurčišinová E; Jurčišin M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):063009. PubMed ID: 26172794 [TBL] [Abstract][Full Text] [Related]
34. Field-theoretic renormalization group for a nonlinear diffusion equation. Antonov NV; Honkonen J Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046105. PubMed ID: 12443257 [TBL] [Abstract][Full Text] [Related]
35. Anomalous scaling of passively advected magnetic field in the presence of strong anisotropy. Hnatich M; Honkonen J; Jurcisin M; Mazzino A; Sprinc S Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066312. PubMed ID: 16089872 [TBL] [Abstract][Full Text] [Related]
36. Strange behavior of a passive scalar in a linear velocity field. Elperin T; Kleeorin N; Rogachevskii I; Sokoloff D Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046305. PubMed ID: 11308943 [TBL] [Abstract][Full Text] [Related]
37. Turbulent Prandtl number of a passively advected vector field in helical environment: two-loop renormalization group result. Jurčišinová E; Jurčišin M; Zalom P Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043023. PubMed ID: 24827348 [TBL] [Abstract][Full Text] [Related]
38. Superfluid phase transition with activated velocity fluctuations: Renormalization group approach. Dančo M; Hnatič M; Komarova MV; Lučivjanský T; Nalimov MY Phys Rev E; 2016 Jan; 93(1):012109. PubMed ID: 26871026 [TBL] [Abstract][Full Text] [Related]
39. Mean-field theory for a passive scalar advected by a turbulent velocity field with a random renewal time. Elperin T; Kleeorin N; Rogachevskii I; Sokoloff D Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026304. PubMed ID: 11497696 [TBL] [Abstract][Full Text] [Related]
40. Finite-size effects in film geometry with nonperiodic boundary conditions: Gaussian model and renormalization-group theory at fixed dimension. Kastening B; Dohm V Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061106. PubMed ID: 20866377 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]