These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 25615224)
1. Numerical solutions of the Schrödinger equation with source terms or time-dependent potentials. van Dijk W; Toyama FM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063309. PubMed ID: 25615224 [TBL] [Abstract][Full Text] [Related]
2. Numerical solutions of the time-dependent Schrödinger equation in two dimensions. van Dijk W; Vanderwoerd T; Prins SJ Phys Rev E; 2017 Feb; 95(2-1):023310. PubMed ID: 28298000 [TBL] [Abstract][Full Text] [Related]
3. Crank-Nicolson method for solving uncertain heat equation. Liu J; Hao Y Soft comput; 2022; 26(3):937-945. PubMed ID: 35002501 [TBL] [Abstract][Full Text] [Related]
4. Accurate numerical solutions of the time-dependent Schrödinger equation. van Dijk W; Toyama FM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036707. PubMed ID: 17500826 [TBL] [Abstract][Full Text] [Related]
5. A Crank-Nicolson collocation spectral method for the two-dimensional telegraph equations. Zhou Y; Luo Z J Inequal Appl; 2018; 2018(1):137. PubMed ID: 30137734 [TBL] [Abstract][Full Text] [Related]
6. Numerical modeling considerations for an applied nonlinear Schrödinger equation. Pitts TA; Laine MR; Schwarz J; Rambo PK; Hautzenroeder BM; Karelitz DB Appl Opt; 2015 Feb; 54(6):1426-35. PubMed ID: 25968209 [TBL] [Abstract][Full Text] [Related]
7. Numerically complemented analytic method for solving the time-independent one-dimensional Schrödinger equation. Selg M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056701. PubMed ID: 11736135 [TBL] [Abstract][Full Text] [Related]
8. Efficiency and accuracy of numerical solutions to the time-dependent Schrödinger equation. van Dijk W; Brown J; Spyksma K Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056703. PubMed ID: 22181543 [TBL] [Abstract][Full Text] [Related]
9. Time-reversible and norm-conserving high-order integrators for the nonlinear time-dependent Schrödinger equation: Application to local control theory. Roulet J; Vaníček J J Chem Phys; 2021 Apr; 154(15):154106. PubMed ID: 33887925 [TBL] [Abstract][Full Text] [Related]
10. Exact transparent boundary condition for the three-dimensional Schrödinger equation in a rectangular cuboid computational domain. Feshchenko RM; Popov AV Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053308. PubMed ID: 24329380 [TBL] [Abstract][Full Text] [Related]
11. A Crank-Nicolson finite spectral element method for the 2D non-stationary Stokes equations about vorticity-stream functions. Zhou Y; Luo Z; Teng F J Inequal Appl; 2018; 2018(1):320. PubMed ID: 30839842 [TBL] [Abstract][Full Text] [Related]
12. Numerical solution of the time-dependent Schrödinger equation for H_{2}^{+} ion with application to high-harmonic generation and above-threshold ionization. Fetić B; Milošević DB Phys Rev E; 2017 May; 95(5-1):053309. PubMed ID: 28618485 [TBL] [Abstract][Full Text] [Related]
13. Lattice Boltzmann schemes for the nonlinear Schrödinger equation. Zhong L; Feng S; Dong P; Gao S Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036704. PubMed ID: 17025783 [TBL] [Abstract][Full Text] [Related]
14. Radiation boundary conditions for the numerical solution of the three-dimensional time-dependent Schrödinger equation with a localized interaction. Heinen M; Kull HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056709. PubMed ID: 19518595 [TBL] [Abstract][Full Text] [Related]
15. Numerical solutions of the time-dependent Schrödinger equation: reduction of the error due to space discretization. Shao H; Wang Z Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056705. PubMed ID: 19518591 [TBL] [Abstract][Full Text] [Related]
17. A Posteriori Error Estimates for Fully Discrete Finite Element Method for Generalized Diffusion Equation with Delay. Wang W; Yi L; Xiao A J Sci Comput; 2020; 84(1):13. PubMed ID: 32834471 [TBL] [Abstract][Full Text] [Related]
18. Wide localized solutions of the parity-time-symmetric nonautonomous nonlinear Schrödinger equation. Meza LE; Dutra Ade S; Hott MB; Roy P Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013205. PubMed ID: 25679731 [TBL] [Abstract][Full Text] [Related]
19. A fast and adaptable method for high accuracy integration of the time-dependent Schrödinger equation. Wells D; Quiney H Sci Rep; 2019 Jan; 9(1):782. PubMed ID: 30692569 [TBL] [Abstract][Full Text] [Related]
20. Two-dimensional oscillator in time-dependent fields: comparison of some exact and approximate calculations. Chuluunbaatar O; Gusev AA; Vinitsky SI; Derbov VL; Galtbayar A; Zhanlav T Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):017701. PubMed ID: 18764088 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]