These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25615224)

  • 21. A new linearized Crank-Nicolson mixed element scheme for the extended Fisher-Kolmogorov equation.
    Wang J; Li H; He S; Gao W; Liu Y
    ScientificWorldJournal; 2013; 2013():756281. PubMed ID: 23864831
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation.
    Wen XY; Yang Y; Yan Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012917. PubMed ID: 26274257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exact analytical solutions for the variational equations derived from the nonlinear Schrödinger equation.
    Moubissi AB; Nakkeeran K; Abobaker AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026603. PubMed ID: 17930163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exact traveling-wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional Schrödinger equation with polynomial nonlinearity of arbitrary order.
    Petrović NZ; Belić M; Zhong WP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026604. PubMed ID: 21405921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical time-dependent solutions of the Schrödinger equation with piecewise continuous potentials.
    van Dijk W
    Phys Rev E; 2016 Jun; 93(6):063307. PubMed ID: 27415387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linear B-spline finite element method for the generalized diffusion equation with delay.
    Lubo GT; Duressa GF
    BMC Res Notes; 2022 Jun; 15(1):195. PubMed ID: 35658930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical solution of the nonlinear Schrödinger equation using smoothed-particle hydrodynamics.
    Mocz P; Succi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053304. PubMed ID: 26066276
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exact solutions of a generalized nonlinear Schrödinger equation.
    Zhang S; Yi L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026602. PubMed ID: 18850957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Boundary-free propagation with the time-dependent Schrodinger equation.
    Sidky EY; Esry BD
    Phys Rev Lett; 2000 Dec; 85(24):5086-9. PubMed ID: 11102192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stable second-order scheme for integrating the Kuramoto-Sivanshinsky equation in polar coordinates using distributed approximating functionals.
    Blomgren P; Gasner S; Palacios A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036701. PubMed ID: 16241608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonlinear dynamics of trapped waves on jet currents and rogue waves.
    Shrira VI; Slunyaev AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):041002. PubMed ID: 24827178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation.
    Hasani MH; Gharibzadeh S; Farjami Y; Tavakkoli J
    J Acoust Soc Am; 2013 Sep; 134(3):1775-90. PubMed ID: 23967912
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Position-dependent mass Schrödinger equation for exponential-type potentials.
    Ovando G; Peña JJ; Morales J; López-Bonilla J
    J Mol Model; 2019 Aug; 25(9):289. PubMed ID: 31471730
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exact numerical solutions for dark waves on the discrete nonlinear Schrödinger equation.
    Sánchez-Rey B; Johansson M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036627. PubMed ID: 15903625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonintegrable semidiscrete Hirota equation: gauge-equivalent structures and dynamical properties.
    Ma LY; Zhu ZN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033202. PubMed ID: 25314554
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissipative periodic waves, solitons, and breathers of the nonlinear Schrödinger equation with complex potentials.
    Abdullaev FKh; Konotop VV; Salerno M; Yulin AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056606. PubMed ID: 21230612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Universal fractal structures in the weak interaction of solitary waves in generalized nonlinear Schrödinger equations.
    Zhu Y; Yang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036605. PubMed ID: 17500807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum mechanical generalized phase-shift approach to atom-surface scattering: a Feshbach projection approach to dealing with closed channel effects.
    Maji K; Kouri DJ
    J Chem Phys; 2011 Mar; 134(12):124103. PubMed ID: 21456641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Higher-order splitting algorithms for solving the nonlinear Schrödinger equation and their instabilities.
    Chin SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056708. PubMed ID: 18233791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamics of kink, antikink, bright, generalized Jacobi elliptic function solutions of matter-wave condensates with time-dependent two- and three-body interactions.
    Belobo Belobo D; Ben-Bolie GH; Kofane TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042902. PubMed ID: 25974557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.