These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25615405)

  • 41. In vivo efficiency of antimicrobial inorganic bone grafts in osteomyelitis treatments.
    Mestres G; Fernandez-Yague MA; Pastorino D; Montufar EB; Canal C; Manzanares-Céspedes MC; Ginebra MP
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():84-95. PubMed ID: 30678975
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vitro degradation and in vivo resorption of dicalcium phosphate cement based grafts.
    Sheikh Z; Zhang YL; Grover L; Merle GE; Tamimi F; Barralet J
    Acta Biomater; 2015 Oct; 26():338-46. PubMed ID: 26300333
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phase transformations, microstructure formation and in vitro osteoblast response in calcium silicate/brushite cement composites.
    Sopcak T; Medvecky L; Giretova M; Kovalcikova A; Stulajterova R; Durisin J
    Biomed Mater; 2016 Aug; 11(4):045013. PubMed ID: 27509265
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fabrication of macroporous carbonate apatite foam by hydrothermal conversion of alpha-tricalcium phosphate in carbonate solutions.
    Wakae H; Takeuchi A; Udoh K; Matsuya S; Munar ML; LeGeros RZ; Nakasima A; Ishikawa K
    J Biomed Mater Res A; 2008 Dec; 87(4):957-63. PubMed ID: 18257056
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams.
    Kovtun A; Goeckelmann MJ; Niclas AA; Montufar EB; Ginebra MP; Planell JA; Santin M; Ignatius A
    Acta Biomater; 2015 Jan; 12():242-249. PubMed ID: 25448348
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preparation and characterizations of an injectable and biodegradable high-strength iron-bearing brushite cement for bone repair and vertebral augmentation applications.
    Ding L; Wang H; Li J; Liu D; Bai J; Yuan Z; Yang J; Bian L; Zhao X; Li B; Chen S
    Biomater Sci; 2022 Dec; 11(1):96-107. PubMed ID: 36445030
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High strength brushite bioceramics obtained by selective regulation of crystal growth with chiral biomolecules.
    Moussa H; Jiang W; Alsheghri A; Mansour A; Hadad AE; Pan H; Tang R; Song J; Vargas J; McKee MD; Tamimi F
    Acta Biomater; 2020 Apr; 106():351-359. PubMed ID: 32035283
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 3D plotting in the preparation of newberyite, struvite, and brushite porous scaffolds: using magnesium oxide as a starting material.
    Cao X; Lu H; Liu J; Lu W; Guo L; Ma M; Zhang B; Guo Y
    J Mater Sci Mater Med; 2019 Jul; 30(8):88. PubMed ID: 31325082
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A comparison of different surfactants on foam stability in foam sclerotherapy in vitro.
    Bai T; Liu Y; Liu J; Yu C; Jiang W; Fan Y
    J Vasc Surg; 2019 Feb; 69(2):581-591.e1. PubMed ID: 29954633
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three-Dimensional Hierarchical Nanofibrous Collagen Scaffold Fabricated Using Fibrillated Collagen and Pluronic F-127 for Regenerating Bone Tissue.
    Lee J; Kim G
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):35801-35811. PubMed ID: 30260631
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Physical, mechanical and
    Orshesh Z; Borhan S; Kafashan H
    J Biomater Sci Polym Ed; 2020 Jan; 31(1):93-109. PubMed ID: 31566481
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Compressive, diametral tensile and biaxial flexural strength of cutting-edge calcium phosphate cements.
    Luo J; Ajaxon I; Ginebra MP; Engqvist H; Persson C
    J Mech Behav Biomed Mater; 2016 Jul; 60():617-627. PubMed ID: 27082025
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bulk and dispersed aqueous behaviour of an endogenous lipid, selachyl alcohol: Effect of Tween 80 and Pluronic F127 on nanostructure.
    Younus M; Hawley A; Boyd BJ; Rizwan SB
    Colloids Surf B Biointerfaces; 2018 Sep; 169():135-142. PubMed ID: 29758539
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hierarchically microporous/macroporous scaffold of magnesium-calcium phosphate for bone tissue regeneration.
    Wei J; Jia J; Wu F; Wei S; Zhou H; Zhang H; Shin JW; Liu C
    Biomaterials; 2010 Feb; 31(6):1260-9. PubMed ID: 19931903
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of highly porous calcium phosphate bone cements applying nonionic surface active agents.
    Cichoń E; Mielan B; Pamuła E; Ślósarczyk A; Zima A
    RSC Adv; 2021 Jul; 11(39):23908-23921. PubMed ID: 35479031
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part II. Bioengineering implants to optimize bone replacement in reconstruction of cranial defects.
    Gosain AK; Riordan PA; Song L; Amarante MT; Kalantarian B; Nagy PG; Wilson CR; Toth JM; McIntyre BL
    Plast Reconstr Surg; 2004 Oct; 114(5):1155-63; discussion 1164-5. PubMed ID: 15457027
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Injectable dicalcium phosphate bone cement prepared from biphasic calcium phosphate extracted from lamb bone.
    Tariq U; Hussain R; Tufail K; Haider Z; Tariq R; Ali J
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109863. PubMed ID: 31349467
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering.
    Xu HH; Quinn JB; Takagi S; Chow LC
    Biomaterials; 2004 Mar; 25(6):1029-37. PubMed ID: 14615168
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Porosity prediction of calcium phosphate cements based on chemical composition.
    Öhman C; Unosson J; Carlsson E; Ginebra MP; Persson C; Engqvist H
    J Mater Sci Mater Med; 2015 Jul; 26(7):210. PubMed ID: 26169187
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gold is for the mistress, silver for the maid: Enhanced mechanical properties, osteoinduction and antibacterial activity due to iron doping of tricalcium phosphate bone cements.
    Uskoković V; Graziani V; Wu VM; Fadeeva IV; Fomin AS; Presniakov IA; Fosca M; Ortenzi M; Caminiti R; Rau JV
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():798-810. PubMed ID: 30423766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.