These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25615405)

  • 61. Gold is for the mistress, silver for the maid: Enhanced mechanical properties, osteoinduction and antibacterial activity due to iron doping of tricalcium phosphate bone cements.
    Uskoković V; Graziani V; Wu VM; Fadeeva IV; Fomin AS; Presniakov IA; Fosca M; Ortenzi M; Caminiti R; Rau JV
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():798-810. PubMed ID: 30423766
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mechanical properties and in-vivo performance of calcium phosphate cement-chitosan fibre composite.
    Lian Q; Li DC; He JK; Wang Z
    Proc Inst Mech Eng H; 2008 Apr; 222(3):347-53. PubMed ID: 18491703
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Production of in-situ macropores in an injectable calcium phosphate cement by introduction of cetyltrimethyl ammonium bromide.
    Wang X; Ye J; Li X; Dong H
    J Mater Sci Mater Med; 2008 Oct; 19(10):3221-5. PubMed ID: 18452031
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Highly flexible and degradable dual setting systems based on PEG-hydrogels and brushite cement.
    Rödel M; Teßmar J; Groll J; Gbureck U
    Acta Biomater; 2018 Oct; 79():182-201. PubMed ID: 30149213
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Increase of the final setting time of brushite cements by using chondroitin 4-sulfate and silica gel.
    Tamimi-Mariño F; Mastio J; Rueda C; Blanco L; López-Cabarcos E
    J Mater Sci Mater Med; 2007 Jun; 18(6):1195-201. PubMed ID: 17277974
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Eggshell derived brushite bone cement with minimal inflammatory response and higher osteoconductive potential.
    Jayasree R; Kumar TSS; Venkateswari R; Nankar RP; Doble M
    J Mater Sci Mater Med; 2019 Oct; 30(10):113. PubMed ID: 31583477
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Preparation of macroporous calcium phosphate cement tissue engineering scaffold.
    Barralet JE; Grover L; Gaunt T; Wright AJ; Gibson IR
    Biomaterials; 2002 Aug; 23(15):3063-72. PubMed ID: 12102177
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of added gelatin on the properties of calcium phosphate cement.
    Bigi A; Bracci B; Panzavolta S
    Biomaterials; 2004 Jun; 25(14):2893-9. PubMed ID: 14962568
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Blooming gelatin: an individual additive for enhancing nanoapatite precipitation, physical properties, and osteoblastic responses of nanostructured macroporous calcium phosphate bone cements.
    Orshesh Z; Hesaraki S; Khanlarkhani A
    Int J Nanomedicine; 2017; 12():745-758. PubMed ID: 28176961
    [TBL] [Abstract][Full Text] [Related]  

  • 70. RhBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration.
    Zhang J; Zhou H; Yang K; Yuan Y; Liu C
    Biomaterials; 2013 Dec; 34(37):9381-92. PubMed ID: 24044997
    [TBL] [Abstract][Full Text] [Related]  

  • 71. An injectable porous bioactive magnesium phosphate bone cement foamed with calcium carbonate and citric acid for periodontal bone regeneration.
    Wang J; Cheng Z; Chen D; Li G; Chen J; Wang K; Xu L; Huang J
    J Mech Behav Biomed Mater; 2023 Jun; 142():105805. PubMed ID: 37087954
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Alginate/poly (lactic-co-glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering.
    Qi X; Ye J; Wang Y
    J Biomed Mater Res A; 2009 Jun; 89(4):980-7. PubMed ID: 18470921
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Hydration mechanism of a calcium phosphate cement modified with phytic acid.
    Hurle K; Weichhold J; Brueckner M; Gbureck U; Brueckner T; Goetz-Neunhoeffer F
    Acta Biomater; 2018 Oct; 80():378-389. PubMed ID: 30195085
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Low temperature fabrication of spherical brushite granules by cement paste emulsion.
    Moseke C; Bayer C; Vorndran E; Barralet JE; Groll J; Gbureck U
    J Mater Sci Mater Med; 2012 Nov; 23(11):2631-7. PubMed ID: 22903599
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Calcium Phosphate Foams: Potential Scaffolds for Bone Tissue Modeling in Three Dimensions.
    Montufar EB; Vojtova L; Celko L; Ginebra MP
    Methods Mol Biol; 2017; 1612():79-94. PubMed ID: 28634936
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Novel bioactive composite bone cements based on the beta-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system.
    Huan Z; Chang J
    Acta Biomater; 2009 May; 5(4):1253-64. PubMed ID: 18996779
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Influence of polymeric additives on the mechanical properties of alpha-tricalcium phosphate cement.
    dos Santos LA; De Oliveria LC; Rigo EC; Carrodeguas RG; Boschi AO; De Arruda AC
    Bone; 1999 Aug; 25(2 Suppl):99S-102S. PubMed ID: 10458286
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Dual-setting calcium phosphate cement modified with ammonium polyacrylate.
    dos Santos LA; Carrodeguas RG; Boschi AO; de Arruda AC
    Artif Organs; 2003 May; 27(5):412-8. PubMed ID: 12752199
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The effect of hyaluronic acid on brushite cement cohesion.
    Alkhraisat MH; Rueda C; Mariño FT; Torres J; Jerez LB; Gbureck U; Cabarcos EL
    Acta Biomater; 2009 Oct; 5(8):3150-6. PubMed ID: 19409871
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Magnesium substitution in brushite cements.
    Alkhraisat MH; Cabrejos-Azama J; Rodríguez CR; Jerez LB; Cabarcos EL
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):475-81. PubMed ID: 25428098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.