These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25615505)

  • 1. Lateral line layout correlates with the differential hydrodynamic pressure on swimming fish.
    Ristroph L; Liao JC; Zhang J
    Phys Rev Lett; 2015 Jan; 114(1):018102. PubMed ID: 25615505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow.
    Liao JC
    J Exp Biol; 2006 Oct; 209(Pt 20):4077-90. PubMed ID: 17023602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic model of fish orientation in a channel flow.
    Porfiri M; Zhang P; Peterson SD
    Elife; 2022 Jun; 11():. PubMed ID: 35666104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kármán vortex street detection by the lateral line.
    Chagnaud BP; Bleckmann H; Hofmann MH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Jul; 193(7):753-63. PubMed ID: 17503054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Group swimming behaviour and energetics in bluegill Lepomis macrochirus and rainbow trout Oncorhynchus mykiss.
    Currier M; Rouse J; Coughlin DJ
    J Fish Biol; 2021 Apr; 98(4):1105-1111. PubMed ID: 33277926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fish optimize sensing and respiration during undulatory swimming.
    Akanyeti O; Thornycroft PJ; Lauder GV; Yanagitsuru YR; Peterson AN; Liao JC
    Nat Commun; 2016 Mar; 7():11044. PubMed ID: 27009352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street.
    Liao JC; Beal DN; Lauder GV; Triantafyllou MS
    J Exp Biol; 2003 Mar; 206(Pt 6):1059-73. PubMed ID: 12582148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamic patterns from fast-starts in teleost fish and their possible relevance to predator-prey interactions.
    Niesterok B; Hanke W
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Feb; 199(2):139-49. PubMed ID: 23180046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromuscular control of trout swimming in a vortex street: implications for energy economy during the Karman gait.
    Liao JC
    J Exp Biol; 2004 Sep; 207(Pt 20):3495-506. PubMed ID: 15339945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of the wake of rainbow trout (Oncorhynchus mykiss) using three-dimensional stereoscopic digital particle image velocimetry.
    Nauen JC; Lauder GV
    J Exp Biol; 2002 Nov; 205(Pt 21):3271-9. PubMed ID: 12324537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory integration in the hydrodynamic world of rainbow trout.
    Montgomery JC; McDonald F; Baker CF; Carton AG; Ling N
    Proc Biol Sci; 2003 Nov; 270 Suppl 2(Suppl 2):S195-7. PubMed ID: 14667381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic sensing does not facilitate active drag reduction in the golden shiner (Notemigonus crysoleucas).
    McHenry MJ; Michel KB; Stewart W; Müller UK
    J Exp Biol; 2010 Apr; 213(Pt 8):1309-19. PubMed ID: 20348343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time position and pose prediction for a self-propelled undulatory swimmer in 3D space with artificial lateral line system.
    Liu R; Ding Y; Xie G
    Bioinspir Biomim; 2024 Jun; 19(4):. PubMed ID: 38722349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rainbow trout Oncorhynchus mykiss consume less energy when swimming near obstructions.
    Cook CL; Coughlin DJ
    J Fish Biol; 2010 Nov; 77(7):1716-23. PubMed ID: 21078030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Man-made flows from a fish's perspective: autonomous classification of turbulent fishway flows with field data collected using an artificial lateral line.
    Tuhtan JA; Fuentes-Perez JF; Toming G; Schneider M; Schwarzenberger R; Schletterer M; Kruusmaa M
    Bioinspir Biomim; 2018 May; 13(4):046006. PubMed ID: 29629711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unsteady turbulent boundary layers in swimming rainbow trout.
    Yanase K; Saarenrinne P
    J Exp Biol; 2015 May; 218(Pt 9):1373-85. PubMed ID: 25750412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mexican blind cavefish use mouth suction to detect obstacles.
    Holzman R; Perkol-Finkel S; Zilman G
    J Exp Biol; 2014 Jun; 217(Pt 11):1955-62. PubMed ID: 24675558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part I: open water and heading towards a wall.
    Windsor SP; Norris SE; Cameron SM; Mallinson GD; Montgomery JC
    J Exp Biol; 2010 Nov; 213(Pt 22):3819-31. PubMed ID: 21037061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rainbow trout consume less oxygen in turbulence: the energetics of swimming behaviors at different speeds.
    Taguchi M; Liao JC
    J Exp Biol; 2011 May; 214(Pt 9):1428-36. PubMed ID: 21490251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entraining in trout: a behavioural and hydrodynamic analysis.
    Przybilla A; Kunze S; Rudert A; Bleckmann H; Brücker C
    J Exp Biol; 2010 Sep; 213(Pt 17):2976-86. PubMed ID: 20709926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.