These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25615560)

  • 1. Chemisorptive enantioselectivity of chiral epoxides on tartaric-acid modified Pd(111): three-point bonding.
    Mahapatra M; Tysoe WT
    Phys Chem Chem Phys; 2015 Feb; 17(7):5450-8. PubMed ID: 25615560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective chemisorption of propylene oxide on a 2-butanol modified Pd(111) surface: the role of hydrogen-bonding interactions.
    Gao F; Wang Y; Burkholder L; Tysoe WT
    J Am Chem Soc; 2007 Dec; 129(49):15240-9. PubMed ID: 18001023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Requirements for the formation of a chiral template.
    Stacchiola D; Burkholder L; Zheng T; Weinert M; Tysoe WT
    J Phys Chem B; 2005 Jan; 109(2):851-6. PubMed ID: 16866451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantiospecific desorption of R- and S-propylene oxide from D- or L-lysine modified Cu(100) surfaces.
    Cheong WY; Gellman AJ
    Langmuir; 2012 Oct; 28(43):15251-62. PubMed ID: 23020648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing chiral solute-water hydrogen bonding networks by chirality transfer effects: a vibrational circular dichroism study of glycidol in water.
    Yang G; Xu Y
    J Chem Phys; 2009 Apr; 130(16):164506. PubMed ID: 19405593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing enantioselectivity on chirally modified Cu(110), Cu(100), and Cu(111) surfaces.
    Cheong WY; Huang Y; Dangaria N; Gellman AJ
    Langmuir; 2010 Nov; 26(21):16412-23. PubMed ID: 20973584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chirality recognition in the glycidol···propylene oxide complex: a rotational spectroscopic study.
    Thomas J; Sunahori FX; Borho N; Xu Y
    Chemistry; 2011 Apr; 17(16):4582-7. PubMed ID: 21433130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms for chemical transformations of (R,R)-tartaric acid on Cu(110): A first principles study.
    Zhang J; Lu T; Jiang C; Zou J; Cao F; Chen Y
    J Chem Phys; 2009 Oct; 131(14):144703. PubMed ID: 19831460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From local adsorption stresses to chiral surfaces: (R,R)-tartaric acid on Ni(110).
    Humblot V; Haq S; Muryn C; Hofer WA; Raval R
    J Am Chem Soc; 2002 Jan; 124(3):503-10. PubMed ID: 11792223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycidol: an Hydroxyl-Containing Epoxide Playing the Double Role of Substrate and Catalyst for CO
    Della Monica F; Buonerba A; Grassi A; Capacchione C; Milione S
    ChemSusChem; 2016 Dec; 9(24):3457-3464. PubMed ID: 27870388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral templating of surfaces: adsorption of (S)-2-methylbutanoic acid on Pt(111) single-crystal surfaces.
    Lee I; Zaera F
    J Am Chem Soc; 2006 Jul; 128(27):8890-8. PubMed ID: 16819884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantioselective chemisorption on a chirally modified surface in ultrahigh vacuum: adsorption of propylene oxide on 2-butoxide-covered palladium(111).
    Stacchiola D; Burkholder L; Tysoe WT
    J Am Chem Soc; 2002 Jul; 124(30):8984-9. PubMed ID: 12137554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superenantioselective chiral surface explosions.
    Gellman AJ; Huang Y; Feng X; Pushkarev VV; Holsclaw B; Mhatre BS
    J Am Chem Soc; 2013 Dec; 135(51):19208-14. PubMed ID: 24261645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular recognition of chiral conformers: a rotational study of the dimers of glycidol.
    Maris A; Giuliano BM; Bonazzi D; Caminati W
    J Am Chem Soc; 2008 Oct; 130(42):13860-1. PubMed ID: 18817399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local and global chirality at surfaces: succinic acid versus tartaric acid on Cu110.
    Humblot V; Lorenzo MO; Baddeley CJ; Haq S; Raval R
    J Am Chem Soc; 2004 May; 126(20):6460-9. PubMed ID: 15149243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A spectroscopic and computational investigation of the conformational structural changes induced by hydrogen bonding networks in the glycidol-water complex.
    Conrad AR; Teumelsan NH; Wang PE; Tubergen MJ
    J Phys Chem A; 2010 Jan; 114(1):336-42. PubMed ID: 19904907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral signatures in angle-resolved valence photoelectron spectroscopy of pure glycidol enantiomers.
    Garcia GA; Nahon L; Harding CJ; Powis I
    Phys Chem Chem Phys; 2008 Mar; 10(12):1628-39. PubMed ID: 18338063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The docking of chiral epoxides on the Whelk-O1 stationary phase: a molecular dynamics study.
    Zhao C; Cann NM
    J Chromatogr A; 2007 May; 1149(2):197-218. PubMed ID: 17433341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioselectivity of adsorption sites created by chiral 2-butanol adsorbed on Pt(111) single-crystal surfaces.
    Lee I; Zaera F
    J Phys Chem B; 2005 Jul; 109(26):12920-6. PubMed ID: 16852604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors relevant to the production of (R)-(+)-glycidol (2,3-epoxy-1-propanol) from racemic glycidol by enantioselective oxidation with Acetobacter pasteurianus ATCC 12874.
    Geerlof A; Jongejan JA; van Dooren TJ; Racemakers-Franken PC; van den Tweel WJ; Duine JA
    Enzyme Microb Technol; 1994 Dec; 16(12):1059-63. PubMed ID: 7765650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.