These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 25615680)
1. Synthesis, optical properties, stability, and encapsulation of Cu-nanoparticles. Bashir O; Hussain S; AL-Thabaiti SA; Khan Z Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 140():265-73. PubMed ID: 25615680 [TBL] [Abstract][Full Text] [Related]
2. Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract. Yallappa S; Manjanna J; Sindhe MA; Satyanarayan ND; Pramod SN; Nagaraja K Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jun; 110():108-15. PubMed ID: 23562740 [TBL] [Abstract][Full Text] [Related]
3. Starch-directed green synthesis, characterization and morphology of silver nanoparticles. Khan Z; Singh T; Hussain JI; Obaid AY; Al-Thabaiti SA; El-Mossalamy EH Colloids Surf B Biointerfaces; 2013 Feb; 102():578-84. PubMed ID: 23104028 [TBL] [Abstract][Full Text] [Related]
4. Glycerol mediated low temperature synthesis of nickel nanoparticles by solution reduction method. Singh K; Kate KH; Chilukuri VV; Khanna PK J Nanosci Nanotechnol; 2011 Jun; 11(6):5131-6. PubMed ID: 21770154 [TBL] [Abstract][Full Text] [Related]
5. Ecofriendly Synthesis of Biosynthesized Copper Nanoparticles with Starch-Based Nanocomposite: Antimicrobial, Antioxidant, and Anticancer Activities. Hasanin M; Al Abboud MA; Alawlaqi MM; Abdelghany TM; Hashem AH Biol Trace Elem Res; 2022 May; 200(5):2099-2112. PubMed ID: 34283366 [TBL] [Abstract][Full Text] [Related]
6. CuNPs-magadiite/chitosan nanocomposite beads as advanced antibacterial agent: Synthetic path and characterization. Mokhtar A; Djelad A; Bengueddach A; Sassi M Int J Biol Macromol; 2018 Oct; 118(Pt B):2149-2155. PubMed ID: 30009912 [TBL] [Abstract][Full Text] [Related]
7. Copper nanoparticles mediated by chitosan: synthesis and characterization via chemical methods. Usman MS; Ibrahim NA; Shameli K; Zainuddin N; Yunus WM Molecules; 2012 Dec; 17(12):14928-36. PubMed ID: 23242252 [TBL] [Abstract][Full Text] [Related]
8. Stabilisation of silver and copper nanoparticles in a chemically modified chitosan matrix. Tiwari AD; Mishra AK; Mishra SB; Kuvarega AT; Mamba BB Carbohydr Polym; 2013 Feb; 92(2):1402-7. PubMed ID: 23399170 [TBL] [Abstract][Full Text] [Related]
9. Novel Biosynthesis of Copper Nanoparticles Using Zingiber and Allium sp. with Synergic Effect of Doxycycline for Anticancer and Bactericidal Activity. Yaqub A; Malkani N; Shabbir A; Ditta SA; Tanvir F; Ali S; Naz M; Kazmi SAR; Ullah R Curr Microbiol; 2020 Sep; 77(9):2287-2299. PubMed ID: 32535649 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of ZnSe and ZnSe:Cu quantum dots by a room temperature photochemical (UV-assisted) approach using Na Khafajeh R; Molaei M; Karimipour M Luminescence; 2017 Jun; 32(4):581-587. PubMed ID: 27699995 [TBL] [Abstract][Full Text] [Related]
11. Functionalization of silver and gold nanoparticles using amino acid conjugated bile salts with tunable longitudinal plasmon resonance. Kasthuri J; Rajendiran N Colloids Surf B Biointerfaces; 2009 Oct; 73(2):387-93. PubMed ID: 19577440 [TBL] [Abstract][Full Text] [Related]
12. Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Ramesh M; Anbuvannan M; Viruthagiri G Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():864-70. PubMed ID: 25459609 [TBL] [Abstract][Full Text] [Related]
13. Cu nanoparticles synthesis using biological molecule of P. granatum seeds extract as reducing and capping agent: Growth mechanism and photo-catalytic activity. Nazar N; Bibi I; Kamal S; Iqbal M; Nouren S; Jilani K; Umair M; Ata S Int J Biol Macromol; 2018 Jan; 106():1203-1210. PubMed ID: 28851642 [TBL] [Abstract][Full Text] [Related]
14. Biogenic synthesis of copper nanoparticles by natural polysaccharides and Pleurotus ostreatus fermented fenugreek using gamma rays with antioxidant and antimicrobial potential towards some wound pathogens. El-Batal AI; Al-Hazmi NE; Mosallam FM; El-Sayyad GS Microb Pathog; 2018 May; 118():159-169. PubMed ID: 29530808 [TBL] [Abstract][Full Text] [Related]
15. Dodecanethiol-protected copper/silver bimetallic nanoclusters and their surface properties. Ang TP; Chin WS J Phys Chem B; 2005 Dec; 109(47):22228-36. PubMed ID: 16853894 [TBL] [Abstract][Full Text] [Related]
16. Novel synthesis of silver nanoparticles using 2,3,5,6-tetrakis-(morpholinomethyl) hydroquinone as reducing agent. Manivel P; Balamurugan A; Ponpandian N; Mangalaraj D; Viswanathan C Spectrochim Acta A Mol Biomol Spectrosc; 2012 Sep; 95():305-9. PubMed ID: 22542686 [TBL] [Abstract][Full Text] [Related]
17. Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract. Subba Rao Y; Kotakadi VS; Prasad TN; Reddy AV; Sai Gopal DV Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():156-9. PubMed ID: 23257344 [TBL] [Abstract][Full Text] [Related]
18. Antimicrobial Activity of Starch Hydrogel Incorporated with Copper Nanoparticles. Villanueva ME; Diez AM; González JA; Pérez CJ; Orrego M; Piehl L; Teves S; Copello GJ ACS Appl Mater Interfaces; 2016 Jun; 8(25):16280-8. PubMed ID: 27295333 [TBL] [Abstract][Full Text] [Related]
19. Effect of processing conditions on sonochemical synthesis of nanosized copper aluminate powders. Lv W; Luo Z; Yang H; Liu B; Weng W; Liu J Ultrason Sonochem; 2010 Feb; 17(2):344-51. PubMed ID: 19570706 [TBL] [Abstract][Full Text] [Related]
20. Spectroscopic studies and antibacterial activities of pure and various levels of Cu-doped BaSO₄ nanoparticles. Sivakumar S; Soundhirarajan P; Venkatesan A; Khatiwada CP Spectrochim Acta A Mol Biomol Spectrosc; 2015 Dec; 151():895-907. PubMed ID: 26184475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]