These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 2561569)
1. Axonal dystrophy in the posterior column nuclei of young adult epileptics with chronic phenytoin intoxication. Nakamura H; Takase Y; Yamada M Jpn J Psychiatry Neurol; 1989 Dec; 43(4):685-93. PubMed ID: 2561569 [TBL] [Abstract][Full Text] [Related]
2. Study of axonal dystrophy. I. Pathology of the neuropil of the gracile and the cuneate nuclei in ageing and old rats: a stereological study. Fujisawa K; Shiraki H Neuropathol Appl Neurobiol; 1978; 4(1):1-20. PubMed ID: 683455 [TBL] [Abstract][Full Text] [Related]
3. Axonal degeneration of ascending sensory neurons in gracile axonal dystrophy mutant mouse. Kikuchi T; Mukoyama M; Yamazaki K; Moriya H Acta Neuropathol; 1990; 80(2):145-51. PubMed ID: 2389679 [TBL] [Abstract][Full Text] [Related]
4. Ultrastructural observations on axonal swelling in the human gracile nucleus. Yagashita S Virchows Arch A Pathol Anat Histol; 1979 May; 382(2):217-26. PubMed ID: 157609 [TBL] [Abstract][Full Text] [Related]
5. Axonal dystrophy of dorsal root ganglion sensory neurons in a mouse model of Niemann-Pick disease type C. Ohara S; Ukita Y; Ninomiya H; Ohno K Exp Neurol; 2004 Jun; 187(2):289-98. PubMed ID: 15144855 [TBL] [Abstract][Full Text] [Related]
8. Quantitative analysis of the feline dorsal column nuclei and their GABAergic and non-GABAergic neurons. Heino R; Westman J Anat Embryol (Berl); 1991; 184(3):181-93. PubMed ID: 1665317 [TBL] [Abstract][Full Text] [Related]
9. [A neuropathological study on axonal dystrophy in the gracile nucleus of an old Japanese monkey]. Fujisawa K Nihon Ronen Igakkai Zasshi; 1993 Oct; 30(10):885-91. PubMed ID: 8301860 [TBL] [Abstract][Full Text] [Related]
10. [An electron microscopic study of axonal dystrophy in the gracile nucleus of vitamin E deficient and normally aging rats]. Takei A Hokkaido Igaku Zasshi; 1992 Nov; 67(6):772-84. PubMed ID: 1483683 [TBL] [Abstract][Full Text] [Related]
11. Cytoskeletal changes and ubiquitin expression in dystrophic axons of Seitelberger's disease. Moretto G; Sparaco M; Monaco S; Bonetti B; Rizzuto N Clin Neuropathol; 1993; 12(1):34-7. PubMed ID: 8382572 [TBL] [Abstract][Full Text] [Related]
12. Long-term protection of central axons with phenytoin in monophasic and chronic-relapsing EAE. Black JA; Liu S; Hains BC; Saab CY; Waxman SG Brain; 2006 Dec; 129(Pt 12):3196-208. PubMed ID: 16931536 [TBL] [Abstract][Full Text] [Related]
13. Cerebellar injury due to phenytoin. Identification and evolution of Purkinje cell axonal swellings in deep cerebellar nuclei of mice. Kiefer R; Knoth R; Anagnostopoulos J; Volk B Acta Neuropathol; 1989; 77(3):289-98. PubMed ID: 2922992 [TBL] [Abstract][Full Text] [Related]
14. Phenytoin protects spinal cord axons and preserves axonal conduction and neurological function in a model of neuroinflammation in vivo. Lo AC; Saab CY; Black JA; Waxman SG J Neurophysiol; 2003 Nov; 90(5):3566-71. PubMed ID: 12904334 [TBL] [Abstract][Full Text] [Related]
15. Triphenyl phosphite and diisopropylphosphorofluoridate produce separate and distinct axonal degeneration patterns in the central nervous system of the rat. Lehning EJ; Tanaka D; Bursian SJ Fundam Appl Toxicol; 1996 Jan; 29(1):110-8. PubMed ID: 8838646 [TBL] [Abstract][Full Text] [Related]
16. Cerebellar atrophy in phenytoin-treated mentally retarded epileptics. Iivanainen M; Viukari M; Helle EP Epilepsia; 1977 Sep; 18(3):375-86. PubMed ID: 891491 [TBL] [Abstract][Full Text] [Related]
17. Brain and spinal cord lesions in 28 inbred strains of aging mice. Ward JM; Vogel P; Sundberg JP Vet Pathol; 2022 Nov; 59(6):1047-1055. PubMed ID: 36062914 [TBL] [Abstract][Full Text] [Related]
18. Dorsal column nuclei and ascending spinal afferents in macaques. Rustioni A; Hayes NL; O'Neill S Brain; 1979 Mar; 102(1):95-125. PubMed ID: 85470 [TBL] [Abstract][Full Text] [Related]
19. Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional motor recovery after contusion SCI. Hains BC; Saab CY; Lo AC; Waxman SG Exp Neurol; 2004 Aug; 188(2):365-77. PubMed ID: 15246836 [TBL] [Abstract][Full Text] [Related]
20. Differential effect of chronic vitamin E deficiency on the development of neuroaxonal dystrophy in rat gracile/cuneate nuclei and prevertebral sympathetic ganglia. Schmidt RE; Coleman BD; Nelson JS Neurosci Lett; 1991 Feb; 123(1):102-6. PubMed ID: 2062445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]