BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 25615694)

  • 21. Conversion of α-chitin substrates with varying particle size and crystallinity reveals substrate preferences of the chitinases and lytic polysaccharide monooxygenase of Serratia marcescens.
    Nakagawa YS; Eijsink VG; Totani K; Vaaje-Kolstad G
    J Agric Food Chem; 2013 Nov; 61(46):11061-6. PubMed ID: 24168426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The C-terminal module of Chi1 from Aeromonas caviae CB101 has a function in substrate binding and hydrolysis.
    Wang FP; Li Q; Zhou Y; Li MG; Xiao X
    Proteins; 2003 Dec; 53(4):908-16. PubMed ID: 14635132
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catalytic efficiency of a multi-domain transglycosylating chitinase from Enterobacter cloacae subsp. cloacae (EcChi2) is influenced by polycystic kidney disease domains.
    Mallakuntla MK; Podile AR
    Enzyme Microb Technol; 2021 Feb; 143():109702. PubMed ID: 33375970
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutation of a conserved tryptophan in the chitin-binding cleft of Serratia marcescens chitinase A enhances transglycosylation.
    Aronson NN; Halloran BA; Alexeyev MF; Zhou XE; Wang Y; Meehan EJ; Chen L
    Biosci Biotechnol Biochem; 2006 Jan; 70(1):243-51. PubMed ID: 16428843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of the N-terminal polycystic kidney disease domain in chitin degradation by chitinase A from a marine bacterium, Alteromonas sp. strain O-7.
    Orikoshi H; Nakayama S; Hanato C; Miyamoto K; Tsujibo H
    J Appl Microbiol; 2005; 99(3):551-7. PubMed ID: 16108796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The chitinolytic machinery of Serratia marcescens--a model system for enzymatic degradation of recalcitrant polysaccharides.
    Vaaje-Kolstad G; Horn SJ; Sørlie M; Eijsink VG
    FEBS J; 2013 Jul; 280(13):3028-49. PubMed ID: 23398882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of chitinase D from Serratia proteamaculans reveals the structural basis of its dual action of hydrolysis and transglycosylation.
    Madhuprakash J; Singh A; Kumar S; Sinha M; Kaur P; Sharma S; Podile AR; Singh TP
    Int J Biochem Mol Biol; 2013; 4(4):166-78. PubMed ID: 24380021
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Key Residues Affecting Transglycosylation Activity in Family 18 Chitinases: Insights into Donor and Acceptor Subsites.
    Madhuprakash J; Dalhus B; Rani TS; Podile AR; Eijsink VGH; Sørlie M
    Biochemistry; 2018 Jul; 57(29):4325-4337. PubMed ID: 29939724
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of exposed aromatic residues in substrate-binding of CBM family 5 chitin-binding domain of alkaline chitinase.
    Uni F; Lee S; Yatsunami R; Fukui T; Nakamura S
    Nucleic Acids Symp Ser (Oxf); 2009; (53):311-2. PubMed ID: 19749385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Auxiliary active site mutations enhance the glycosynthase activity of a GH18 chitinase for polymerization of chitooligosaccharides.
    Alsina C; Sancho-Vaello E; Aranda-Martínez A; Faijes M; Planas A
    Carbohydr Polym; 2021 Jan; 252():117121. PubMed ID: 33183587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation.
    Watanabe T; Ito Y; Yamada T; Hashimoto M; Sekine S; Tanaka H
    J Bacteriol; 1994 Aug; 176(15):4465-72. PubMed ID: 8045877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transglycosylation by a chitinase from Enterobacter cloacae subsp. cloacae generates longer chitin oligosaccharides.
    Mallakuntla MK; Vaikuntapu PR; Bhuvanachandra B; Das SN; Podile AR
    Sci Rep; 2017 Jul; 7(1):5113. PubMed ID: 28698589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutation of active site residues in the chitin-binding domain ChBDChiA1 from chitinase A1 of Bacillus circulans alters substrate specificity: use of a green fluorescent protein binding assay.
    Hardt M; Laine RA
    Arch Biochem Biophys; 2004 Jun; 426(2):286-97. PubMed ID: 15158679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Roles of four chitinases (chia, chib, chic, and chid) in the chitin degradation system of marine bacterium Alteromonas sp. strain O-7.
    Orikoshi H; Nakayama S; Miyamoto K; Hanato C; Yasuda M; Inamori Y; Tsujibo H
    Appl Environ Microbiol; 2005 Apr; 71(4):1811-5. PubMed ID: 15812005
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structures of an archaeal chitinase ChiD and its ligand complexes.
    Nishitani Y; Horiuchi A; Aslam M; Kanai T; Atomi H; Miki K
    Glycobiology; 2018 Jun; 28(6):418-426. PubMed ID: 29800365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of the surface-exposed residues on the binding and hydrolytic activities of Vibrio carchariae chitinase A.
    Pantoom S; Songsiriritthigul C; Suginta W
    BMC Biochem; 2008 Jan; 9():2. PubMed ID: 18205958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure and enzymatic properties of a bacterial family 19 chitinase reveal differences from plant enzymes.
    Hoell IA; Dalhus B; Heggset EB; Aspmo SI; Eijsink VG
    FEBS J; 2006 Nov; 273(21):4889-900. PubMed ID: 17010167
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification and characterization of the gene cluster involved in chitin degradation in a marine bacterium, Alteromonas sp. strain O-7.
    Tsujibo H; Orikoshi H; Baba N; Miyahara M; Miyamoto K; Yasuda M; Inamori Y
    Appl Environ Microbiol; 2002 Jan; 68(1):263-70. PubMed ID: 11772635
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation.
    Vaaje-Kolstad G; Horn SJ; van Aalten DM; Synstad B; Eijsink VG
    J Biol Chem; 2005 Aug; 280(31):28492-7. PubMed ID: 15929981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Properties of catalytic, linker and chitin-binding domains of insect chitinase.
    Arakane Y; Zhu Q; Matsumiya M; Muthukrishnan S; Kramer KJ
    Insect Biochem Mol Biol; 2003 Jun; 33(6):631-48. PubMed ID: 12770581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.