These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 25615712)

  • 1. Calculation of substructural analysis weights using a genetic algorithm.
    Holliday JD; Sani N; Willett P
    J Chem Inf Model; 2015 Feb; 55(2):214-21. PubMed ID: 25615712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum common substructure-based data fusion in similarity searching.
    Duesbury E; Holliday J; Willett P
    J Chem Inf Model; 2015 Feb; 55(2):222-30. PubMed ID: 25602464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous classifier fusion for ligand-based virtual screening: or, how decision making by committee can be a good thing.
    Riniker S; Fechner N; Landrum GA
    J Chem Inf Model; 2013 Nov; 53(11):2829-36. PubMed ID: 24171408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers.
    Cheng F; Yu Y; Shen J; Yang L; Li W; Liu G; Lee PW; Tang Y
    J Chem Inf Model; 2011 May; 51(5):996-1011. PubMed ID: 21491913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward a benchmarking data set able to evaluate ligand- and structure-based virtual screening using public HTS data.
    Lindh M; Svensson F; Schaal W; Zhang J; Sköld C; Brandt P; Karlén A
    J Chem Inf Model; 2015 Feb; 55(2):343-53. PubMed ID: 25564966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictions of BuChE inhibitors using support vector machine and naive Bayesian classification techniques in drug discovery.
    Fang J; Yang R; Gao L; Zhou D; Yang S; Liu AL; Du GH
    J Chem Inf Model; 2013 Nov; 53(11):3009-20. PubMed ID: 24144102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using information from historical high-throughput screens to predict active compounds.
    Riniker S; Wang Y; Jenkins JL; Landrum GA
    J Chem Inf Model; 2014 Jul; 54(7):1880-91. PubMed ID: 24933016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Approaches Toward Building Predictive Models for Small Molecule Modulators of miRNA and Its Utility in Virtual Screening of Molecular Databases.
    Periwal V; Scaria V
    Methods Mol Biol; 2017; 1517():155-168. PubMed ID: 27924481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of machine learning to improve the results of high-throughput docking against the HIV-1 protease.
    Klon AE; Glick M; Davies JW
    J Chem Inf Comput Sci; 2004; 44(6):2216-24. PubMed ID: 15554692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Similarity coefficients for binary chemoinformatics data: overview and extended comparison using simulated and real data sets.
    Todeschini R; Consonni V; Xiang H; Holliday J; Buscema M; Willett P
    J Chem Inf Model; 2012 Nov; 52(11):2884-901. PubMed ID: 23078167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of scaffold hopping efficiency by use of molecular interaction fingerprints.
    Venhorst J; Núñez S; Terpstra JW; Kruse CG
    J Med Chem; 2008 Jun; 51(11):3222-9. PubMed ID: 18447336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-based virtual screening using Bayesian networks.
    Abdo A; Chen B; Mueller C; Salim N; Willett P
    J Chem Inf Model; 2010 Jun; 50(6):1012-20. PubMed ID: 20504032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potency-directed similarity searching using support vector machines.
    Wassermann AM; Heikamp K; Bajorath J
    Chem Biol Drug Des; 2011 Jan; 77(1):30-8. PubMed ID: 21114788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand-target prediction using Winnow and naive Bayesian algorithms and the implications of overall performance statistics.
    Nigsch F; Bender A; Jenkins JL; Mitchell JB
    J Chem Inf Model; 2008 Dec; 48(12):2313-25. PubMed ID: 19055411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting protein-ligand interactions based on bow-pharmacological space and Bayesian additive regression trees.
    Li L; Koh CC; Reker D; Brown JB; Wang H; Lee NK; Liow HH; Dai H; Fan HM; Chen L; Wei DQ
    Sci Rep; 2019 May; 9(1):7703. PubMed ID: 31118426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rule-based classification models of molecular autofluorescence.
    Su BH; Tu YS; Lin OA; Harn YC; Shen MY; Tseng YJ
    J Chem Inf Model; 2015 Feb; 55(2):434-45. PubMed ID: 25625768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Note on naive Bayes based on binary descriptors in cheminformatics.
    Townsend JA; Glen RC; Mussa HY
    J Chem Inf Model; 2012 Oct; 52(10):2494-500. PubMed ID: 22900941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perturbation-Theory and Machine Learning (PTML) Model for High-Throughput Screening of Parham Reactions: Experimental and Theoretical Studies.
    Simón-Vidal L; García-Calvo O; Oteo U; Arrasate S; Lete E; Sotomayor N; González-Díaz H
    J Chem Inf Model; 2018 Jul; 58(7):1384-1396. PubMed ID: 29898360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian methods in virtual screening and chemical biology.
    Bender A
    Methods Mol Biol; 2011; 672():175-96. PubMed ID: 20838969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.