BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

29 related articles for article (PubMed ID: 25615714)

  • 1. Mechanically enhanced and osteobioactive synthetic periosteum via development of poly(ε-caprolactone)/microtantalum composite.
    Liu P; Qiu T; Liu J; Long X; Wang X; Nie H; Yu M; Ma C; Lin N; Teoh SH; Wang Z
    Colloids Surf B Biointerfaces; 2023 Nov; 231():113537. PubMed ID: 37776773
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Roberts CT; Beck SK; Prejean CM; Graul LM; Maitland DJ; Grunlan MA
    J Mater Chem B; 2024 Apr; 12(15):3694-3702. PubMed ID: 38529581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coextruded, aligned, and gradient-modified poly(ε-caprolactone) fibers as platforms for neural growth.
    Kim SE; Harker EC; De Leon AC; Advincula RC; Pokorski JK
    Biomacromolecules; 2015 Mar; 16(3):860-7. PubMed ID: 25715836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelastic, Thermal, and Mechanical Properties of Melt-Processed Poly (ε-Caprolactone) (PCL)/Hydroxyapatite (HAP) Composites.
    Motloung MP; Mofokeng TG; Ray SS
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomechanical Mapping of Three Dimensionally Printed Poly-ε-Caprolactone Single Microfibers at the Cell Scale for Bone Tissue Engineering Applications.
    Bontempi M; Marchiori G; Petretta M; Capozza R; Grigolo B; Giavaresi G; Gambardella A
    Biomimetics (Basel); 2023 Dec; 8(8):. PubMed ID: 38132556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melt Electrowriting of Nylon-12 Microfibers with an Open-Source 3D Printer.
    Reizabal A; Devlin BL; Paxton NC; Saiz PG; Liashenko I; Luposchainsky S; Woodruff MA; Lanceros-Mendez S; Dalton PD
    Macromol Rapid Commun; 2023 Dec; 44(24):e2300424. PubMed ID: 37821091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between the Young's Modulus and the Crystallinity of Cross-Linked Poly(ε-caprolactone) as an Immobilization Membrane for Cancer Radiotherapy.
    Dong J; Liu J; Li X; Liang Q; Xu X
    Glob Chall; 2020 Aug; 4(8):2000008. PubMed ID: 32782823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale Restructuring of Polymer Materials to Produce Single Polymer Composites and Miscible Blends.
    Tonelli AE
    Biomolecules; 2019 Jun; 9(6):. PubMed ID: 31248211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reorganizing Polymer Chains with Cyclodextrins.
    Gurarslan A; Joijode A; Shen J; Narayanan G; Antony GJ; Li S; Caydamli Y; Tonelli AE
    Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30965971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Stereocomplexation Ability of Polylactide by Coalescing from Its Inclusion Complex with Urea.
    Liu P; Chen XT; Ye HM
    Polymers (Basel); 2017 Nov; 9(11):. PubMed ID: 30965892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lightweight Poly(ε-Caprolactone) Composites with Surface Modified Hollow Glass Microspheres for Use in Rotational Molding: Thermal, Rheological and Mechanical Properties.
    Vignali A; Iannace S; Falcone G; Utzeri R; Stagnaro P; Bertini F
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 30960609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymers Containing Non-Covalently Bound Cyclodextrins.
    Tonelli AE
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusional behavior and guest conformational analysis of hexadecane-1,16-diol and hexadecane in urea crystal model via molecular dynamics simulation approach.
    Mustafa SF; Maarof H; Ahmed R; Abdallah HH
    J Mol Model; 2016 Dec; 22(12):290. PubMed ID: 27866329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coalesced poly(ε-caprolactone) fibers are stronger.
    Gurarslan A; Caydamli Y; Shen J; Tse S; Yetukuri M; Tonelli AE
    Biomacromolecules; 2015 Mar; 16(3):890-3. PubMed ID: 25615714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering.
    Cui Z; Nelson B; Peng Y; Li K; Pilla S; Li WJ; Turng LS; Shen C
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1674-81. PubMed ID: 24364976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control on molecular weight reduction of poly(ε-caprolactone) during melt spinning--a way to produce high strength biodegradable fibers.
    Pal J; Kankariya N; Sanwaria S; Nandan B; Srivastava RK
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4213-20. PubMed ID: 23910335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melting and crystallization behaviors of biodegradable polymers enzymatically coalesced from their cyclodextrin inclusion complexes.
    Wei M; Shuai X; Tonelli AE
    Biomacromolecules; 2003; 4(3):783-92. PubMed ID: 12741799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical testing of electrospun PCL fibers.
    Croisier F; Duwez AS; Jérôme C; Léonard AF; van der Werf KO; Dijkstra PJ; Bennink ML
    Acta Biomater; 2012 Jan; 8(1):218-24. PubMed ID: 21878398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymers for Melt Electrowriting.
    Kade JC; Dalton PD
    Adv Healthc Mater; 2021 Jan; 10(1):e2001232. PubMed ID: 32940962
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.