These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25616053)

  • 1. Discrete Versus Continuous Mapping of Facial Electromyography for Human-Machine Interface Control: Performance and Training Effects.
    Cler GJ; Stepp CE
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):572-80. PubMed ID: 25616053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrete vs. continuous surface electromyographic interface control.
    Cler MJ; Michener CM; Stepp CE
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4374-7. PubMed ID: 25570961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface electromyographic control of speech synthesis.
    Cler MJ; Nieto-Castanon A; Guenther FH; Stepp CE
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5848-51. PubMed ID: 25571326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Optimal Facial Electromyographic Sensor Configurations for Human-Machine Interface Control.
    Vojtech JM; Cler GJ; Stepp CE
    IEEE Trans Neural Syst Rehabil Eng; 2018 Aug; 26(8):1566-1576. PubMed ID: 29994124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated electromyogram and eye-gaze tracking cursor control system for computer users with motor disabilities.
    Chin CA; Barreto A; Cremades JG; Adjouadi M
    J Rehabil Res Dev; 2008; 45(1):161-74. PubMed ID: 18566935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface electromyographic control of a novel phonemic interface for speech synthesis.
    Cler GJ; Nieto-Castañón A; Guenther FH; Fager SK; Stepp CE
    Augment Altern Commun; 2016 Jun; 32(2):120-30. PubMed ID: 27141992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hands-free human computer interaction via an electromyogram-based classification algorithm.
    Chin C; Barreto A; Li C; Zhai J
    Biomed Sci Instrum; 2005; 41():31-6. PubMed ID: 15850078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human facial neural activities and gesture recognition for machine-interfacing applications.
    Hamedi M; Salleh ShH; Tan TS; Ismail K; Ali J; Dee-Uam C; Pavaganun C; Yupapin PP
    Int J Nanomedicine; 2011; 6():3461-72. PubMed ID: 22267930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The integration of electromyogram and eye gaze tracking inputs for hands-free cursor control.
    Chin CA; Barreto A
    Biomed Sci Instrum; 2007; 43():152-7. PubMed ID: 17487073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and evaluation of a assistive computer interface by SEMG for individuals with spinal cord injuries.
    Choi C; Rim B; Kim J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975386. PubMed ID: 22275590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain-muscle-computer interface: mobile-phone prototype development and testing.
    Vernon S; Joshi SS
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):531-8. PubMed ID: 21571616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of facial electromyography in computer mouse access for people with disabilities.
    Huang CN; Chen CH; Chung HY
    Disabil Rehabil; 2006 Feb; 28(4):231-7. PubMed ID: 16467058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of sEMG sensors and algorithms for silent speech recognition.
    Meltzner GS; Heaton JT; Deng Y; De Luca G; Roy SH; Kline JC
    J Neural Eng; 2018 Aug; 15(4):046031. PubMed ID: 29855428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution surface electromyographic activities of facial muscles during the six basic emotional expressions in healthy adults: a prospective observational study.
    Guntinas-Lichius O; Trentzsch V; Mueller N; Heinrich M; Kuttenreich AM; Dobel C; Volk GF; Graßme R; Anders C
    Sci Rep; 2023 Nov; 13(1):19214. PubMed ID: 37932337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of augmentative visual training on audio-motor mapping.
    Hands GL; Larson E; Stepp CE
    Hum Mov Sci; 2014 Jun; 35():145-55. PubMed ID: 24529925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning to modulate the partial powers of a single sEMG power spectrum through a novel human-computer interface.
    Skavhaug IM; Lyons KR; Nemchuk A; Muroff SD; Joshi SS
    Hum Mov Sci; 2016 Jun; 47():60-69. PubMed ID: 26874751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced real-time cursor control algorithm, based on the spectral analysis of electromyograms.
    Chin CA; Barreto A; Adjouadi M
    Biomed Sci Instrum; 2006; 42():249-54. PubMed ID: 16817616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An SEMG computer interface using three myoelectric sites for proportional two-dimensional cursor motion control and clicking for individuals with spinal cord injuries.
    Choi C; Na Y; Rim B; Kim Y; Kang S; Kim J
    Med Eng Phys; 2013 Jun; 35(6):777-83. PubMed ID: 22939517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. User Training With Error Augmentation for sEMG-Based Gesture Classification.
    Bicer Y; Smedemark-Margulies N; Celik B; Sunger E; Orendorff R; Naufel S; Imbiriba T; Erdogmus D; Tunik E; Yarossi M
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1187-1197. PubMed ID: 38427549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.