These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
439 related articles for article (PubMed ID: 25616115)
1. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge. Sun J; Pikaar I; Sharma KR; Keller J; Yuan Z Water Res; 2015 Mar; 71():150-9. PubMed ID: 25616115 [TBL] [Abstract][Full Text] [Related]
2. Iron salts dosage for sulfide control in sewers induces chemical phosphorus removal during wastewater treatment. Gutierrez O; Park D; Sharma KR; Yuan Z Water Res; 2010 Jun; 44(11):3467-75. PubMed ID: 20434190 [TBL] [Abstract][Full Text] [Related]
3. Effects of in-sewer dosing of iron-rich drinking water sludge on wastewater collection and treatment systems. Rebosura M; Salehin S; Pikaar I; Kulandaivelu J; Jiang G; Keller J; Sharma K; Yuan Z Water Res; 2020 Mar; 171():115396. PubMed ID: 31877476 [TBL] [Abstract][Full Text] [Related]
4. Simulation of sulfide buildup in wastewater and atmosphere of sewer networks. Nielsen AH; Yongsiri C; Hvitved-Jacobsen T; Vollertsen J Water Sci Technol; 2005; 52(3):201-8. PubMed ID: 16206860 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing. Zhang L; Keller J; Yuan Z Water Res; 2009 Sep; 43(17):4123-32. PubMed ID: 19576610 [TBL] [Abstract][Full Text] [Related]
6. Impact of reduced water consumption on sulfide and methane production in rising main sewers. Sun J; Hu S; Sharma KR; Bustamante H; Yuan Z J Environ Manage; 2015 May; 154():307-15. PubMed ID: 25748598 [TBL] [Abstract][Full Text] [Related]
7. Assessing the removal of organic micropollutants from wastewater by discharging drinking water sludge to sewers. Kulandaivelu J; Choi PM; Shrestha S; Li X; Song Y; Li J; Sharma K; Yuan Z; Mueller JF; Wang C; Jiang G Water Res; 2020 Aug; 181():115945. PubMed ID: 32502752 [TBL] [Abstract][Full Text] [Related]
8. Opportunities for reducing coagulants usage in urban water management: The Oxley Creek Sewage Collection and Treatment System as an example. Salehin S; Kulandaivelu J; Rebosura M; Khan W; Wong R; Jiang G; Smith P; McPhee P; Howard C; Sharma K; Keller J; Donose BC; Yuan Z; Pikaar I Water Res; 2019 Nov; 165():114996. PubMed ID: 31465996 [TBL] [Abstract][Full Text] [Related]
9. The impact of primary sedimentation on the use of iron-rich drinking water sludge on the urban wastewater system. Rebosura M; Salehin S; Pikaar I; Keller J; Sharma K; Yuan Z J Hazard Mater; 2021 Jan; 402():124051. PubMed ID: 33254834 [TBL] [Abstract][Full Text] [Related]
10. Effects of nitrate dosing on sulfidogenic and methanogenic activities in sewer sediment. Liu Y; Sharma KR; Ni BJ; Fan L; Murthy S; Tyson GQ; Yuan Z Water Res; 2015 May; 74():155-65. PubMed ID: 25727155 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous removal of hydrogen sulfide, phosphate and emerging organic contaminants, and improvement of sludge dewaterability by oxidant dosing in sulfide-iron-laden sludge. Yin R; Peng J; Sun J; Li C; Xia D; Shang C Water Res; 2021 Sep; 203():117557. PubMed ID: 34418644 [TBL] [Abstract][Full Text] [Related]
12. Sulfide-iron interactions in domestic wastewater from a gravity sewer. Haaning Nielsen A; Lens P; Vollertsen J; Hvitved-Jacobsen T Water Res; 2005 Jul; 39(12):2747-55. PubMed ID: 15978649 [TBL] [Abstract][Full Text] [Related]
13. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
14. Full-scale investigation of ferrous dosing in sewers and a wastewater treatment plant for multiple benefits. Kulandaivelu J; Shrestha S; Khan W; Dwyer J; Steward A; Bell L; Mcphee P; Smith P; Hu S; Yuan Z; Jiang G Chemosphere; 2020 Jul; 250():126221. PubMed ID: 32114337 [TBL] [Abstract][Full Text] [Related]
15. Recovery of in-sewer dosed iron from digested sludge at downstream treatment plants and its reuse potential. Salehin S; Rebosura M; Keller J; Gernjak W; Donose BC; Yuan Z; Pikaar I Water Res; 2020 May; 174():115627. PubMed ID: 32101785 [TBL] [Abstract][Full Text] [Related]
16. Effects of aging of ferric-based drinking water sludge on its reactivity for sulfide and phosphate removal. Salehin S; Kulandaivelu JK; Rebosura M; van der Kolk O; Keller J; Doederer K; Gernjak W; Donose BC; Yuan Z; Pikaar I Water Res; 2020 Oct; 184():116179. PubMed ID: 32688148 [TBL] [Abstract][Full Text] [Related]
17. Anoxic sulfide oxidation in wastewater of sewer networks. Yang W; Vollertsen J; Hvitved-Jacobsen T Water Sci Technol; 2005; 52(3):191-9. PubMed ID: 16206859 [TBL] [Abstract][Full Text] [Related]
18. Recent findings on sinks for sulfide in gravity sewer networks. Nielsen AH; Hvitved-Jacobsen T; Vollertsen J Water Sci Technol; 2006; 54(6-7):127-34. PubMed ID: 17120642 [TBL] [Abstract][Full Text] [Related]
19. SCORe-CT: a new method for testing effectiveness of sulfide-control chemicals used in sewer systems. Gutierrez O; Sudarjanto G; Sharma KR; Keller J; Yuan Z Water Sci Technol; 2011; 64(12):2381-8. PubMed ID: 22170831 [TBL] [Abstract][Full Text] [Related]
20. Revealing the variations in physicochemical, morphological, fractal, and rheological properties of digestate during the mesophilic anaerobic digestion of iron-rich waste activated sludge. Shrestha S; Kulandaivelu J; Rebosura MJR; Yuan Z; Sharma K Chemosphere; 2020 Sep; 254():126811. PubMed ID: 32334260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]