These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 25616238)
1. Wheat bran biorefinery--an insight into the process chain for the production of lactic acid. Tirpanalan Ö; Reisinger M; Smerilli M; Huber F; Neureiter M; Kneifel W; Novalin S Bioresour Technol; 2015 Mar; 180():242-9. PubMed ID: 25616238 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous saccharification and L-(+)-lactic acid fermentation of protease-treated wheat bran using mixed culture of lactobacilli. John RP; Nampoothiri KM; Pandey A Biotechnol Lett; 2006 Nov; 28(22):1823-6. PubMed ID: 16900327 [TBL] [Abstract][Full Text] [Related]
3. Fermentative production of L(+)-lactic acid using hydrolyzed acorn starch, persimmon juice and wheat bran hydrolysate as nutrients. Lu Z; He F; Shi Y; Lu M; Yu L Bioresour Technol; 2010 May; 101(10):3642-8. PubMed ID: 20116239 [TBL] [Abstract][Full Text] [Related]
4. Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials. Wee YJ; Ryu HW Bioresour Technol; 2009 Sep; 100(18):4262-70. PubMed ID: 19394215 [TBL] [Abstract][Full Text] [Related]
5. Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis. Garde A; Jonsson G; Schmidt AS; Ahring BK Bioresour Technol; 2002 Feb; 81(3):217-23. PubMed ID: 11800488 [TBL] [Abstract][Full Text] [Related]
6. Comparison of homo- and heterofermentative lactic acid bacteria for implementation of fermented wheat bran in bread. Prückler M; Lorenz C; Endo A; Kraler M; Dürrschmid K; Hendriks K; Soares da Silva F; Auterith E; Kneifel W; Michlmayr H Food Microbiol; 2015 Aug; 49():211-9. PubMed ID: 25846933 [TBL] [Abstract][Full Text] [Related]
7. Production of optically pure L-lactic acid from lignocellulosic hydrolysate by using a newly isolated and D-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain. Kuo YC; Yuan SF; Wang CA; Huang YJ; Guo GL; Hwang WS Bioresour Technol; 2015 Dec; 198():651-7. PubMed ID: 26433790 [TBL] [Abstract][Full Text] [Related]
8. Wheat bran biorefinery: an investigation on the starch derived glucose extraction accompanied by pre- and post-treatment steps. Tirpanalan Ö; Reisinger M; Huber F; Kneifel W; Novalin S Bioresour Technol; 2014 Jul; 163():295-9. PubMed ID: 24835741 [TBL] [Abstract][Full Text] [Related]
9. Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Tanaka T; Hoshina M; Tanabe S; Sakai K; Ohtsubo S; Taniguchi M Bioresour Technol; 2006 Jan; 97(2):211-7. PubMed ID: 16171677 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the Fermentation Potential of Pulp Mill Residue to Produce D(-)-Lactic Acid by Separate Hydrolysis and Fermentation Using Lactobacillus coryniformis subsp. torquens. de Oliveira Moraes A; Ramirez NI; Pereira N Appl Biochem Biotechnol; 2016 Dec; 180(8):1574-1585. PubMed ID: 27424161 [TBL] [Abstract][Full Text] [Related]
11. Fermentative production of DL-lactic acid from amylase-treated rice and wheat brans hydrolyzate by a novel lactic acid bacterium, Lactobacillus sp. Yun JS; Wee YJ; Kim JN; Ryu HW Biotechnol Lett; 2004 Oct; 26(20):1613-6. PubMed ID: 15604807 [TBL] [Abstract][Full Text] [Related]
12. Direct lactic acid fermentation of Jerusalem artichoke tuber extract using Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis. Choi HY; Ryu HK; Park KM; Lee EG; Lee H; Kim SW; Choi ES Bioresour Technol; 2012 Jun; 114():745-7. PubMed ID: 22516247 [TBL] [Abstract][Full Text] [Related]
13. Utilization of rice bran as nutrient source for fermentative lactic acid production. Gao MT; Kaneko M; Hirata M; Toorisaka E; Hano T Bioresour Technol; 2008 Jun; 99(9):3659-64. PubMed ID: 17890081 [TBL] [Abstract][Full Text] [Related]
14. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. Abdel-Rahman MA; Tashiro Y; Sonomoto K J Biotechnol; 2011 Dec; 156(4):286-301. PubMed ID: 21729724 [TBL] [Abstract][Full Text] [Related]
15. Selection of medium components by Plackett-Burman design for production of L(+) lactic acid by Lactobacillus amylophilus GV6 in SSF using wheat bran. Naveena BJ; Altaf M; Bhadriah K; Reddy G Bioresour Technol; 2005 Mar; 96(4):485-90. PubMed ID: 15491831 [TBL] [Abstract][Full Text] [Related]
16. Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. John RP; Nampoothiri KM; Pandey A Appl Microbiol Biotechnol; 2007 Mar; 74(3):524-34. PubMed ID: 17225102 [TBL] [Abstract][Full Text] [Related]
17. Application of the biorefinery concept to produce L-lactic acid from the soybean vinasse at laboratory and pilot scale. Karp SG; Igashiyama AH; Siqueira PF; Carvalho JC; Vandenberghe LP; Thomaz-Soccol V; Coral J; Tholozan JL; Pandey A; Soccol CR Bioresour Technol; 2011 Jan; 102(2):1765-72. PubMed ID: 20933391 [TBL] [Abstract][Full Text] [Related]
18. Complete bioconversion of hemicellulosic sugars from agricultural residues into lactic acid by Lactobacillus pentosus. Moldes AB; Torrado A; Converti A; Domínguez JM Appl Biochem Biotechnol; 2006 Dec; 135(3):219-28. PubMed ID: 17299209 [TBL] [Abstract][Full Text] [Related]
19. Kinetic study of the conversion of different substrates to lactic acid using Lactobacillus bulgaricus. Burgos-Rubio CN; Okos MR; Wankat PC Biotechnol Prog; 2000; 16(3):305-14. PubMed ID: 10835228 [TBL] [Abstract][Full Text] [Related]
20. Wheat bran biorefinery--a detailed investigation on hydrothermal and enzymatic treatment. Reisinger M; Tirpanalan O; Prückler M; Huber F; Kneifel W; Novalin S Bioresour Technol; 2013 Sep; 144():179-85. PubMed ID: 23867537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]