These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25616238)

  • 21. Development of an oat-based biorefinery for the production of L(+)-lactic acid by Rhizopus oryzae and various value-added coproducts.
    Koutinas AA; Malbranque F; Wang R; Campbell GM; Webb C
    J Agric Food Chem; 2007 Mar; 55(5):1755-61. PubMed ID: 17288441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acid hydrolysis of sugarcane bagasse for lactic acid production.
    Laopaiboon P; Thani A; Leelavatcharamas V; Laopaiboon L
    Bioresour Technol; 2010 Feb; 101(3):1036-43. PubMed ID: 19766480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lactic acid production from food waste hydrolysate by Lactobacillus pentosus: Focus on nitrogen supplementation, initial sugar concentration, pH, and fed-batch fermentation.
    Lobeda K; Jin Q; Wu J; Zhang W; Huang H
    J Food Sci; 2022 Jul; 87(7):3071-3083. PubMed ID: 35669993
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fermentative l-lactic acid production from pretreated whole slurry of oil palm trunk treated by hydrothermolysis and subsequent enzymatic hydrolysis.
    Eom IY; Oh YH; Park SJ; Lee SH; Yu JH
    Bioresour Technol; 2015 Jun; 185():143-9. PubMed ID: 25768416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Open fermentative production of L-lactic acid using white rice bran by simultaneous saccharification and fermentation.
    Wang Y; Cai D; He M; Wang Z; Qin P; Tan T
    Bioresour Technol; 2015 Dec; 198():664-72. PubMed ID: 26433792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lactic acid production from agricultural resources as cheap raw materials.
    Oh H; Wee YJ; Yun JS; Ho Han S; Jung S; Ryu HW
    Bioresour Technol; 2005 Sep; 96(13):1492-8. PubMed ID: 15939277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Food additive lactic acid production by immobilized cells of Lactobacillus brevis on delignified cellulosic material.
    Elezi O; Kourkoutas Y; Koutinas AA; Kanellaki M; Bezirtzoglou E; Barnett YA; Nigam P
    J Agric Food Chem; 2003 Aug; 51(18):5285-9. PubMed ID: 12926871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conversion of aqueous ammonia-treated corn stover to lactic acid by simultaneous saccharification and cofermentation.
    Zhu Y; Lee YY; Elander RT
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):721-38. PubMed ID: 18478429
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An economic approach for L-(+) lactic acid fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources.
    Altaf M; Venkateshwar M; Srijana M; Reddy G
    J Appl Microbiol; 2007 Aug; 103(2):372-80. PubMed ID: 17650197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. End-product inhibition and acidification limit biowaste fermentation efficiency.
    Probst M; Walter A; Dreschke G; Fornasier F; Pümpel T; Walde J; Insam H
    Bioresour Technol; 2015 Dec; 198():540-9. PubMed ID: 26433150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lactobacillus pentosus CECT 4023 T co-utilizes glucose and xylose to produce lactic acid from wheat straw hydrolysate: Anaerobiosis as a key factor.
    Cubas-Cano E; González-Fernández C; Ballesteros M; Tomás-Pejó E
    Biotechnol Prog; 2019 Jan; 35(1):e2739. PubMed ID: 30378762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced L-(+)-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate.
    Bai DM; Li SZ; Liu ZL; Cui ZF
    Appl Biochem Biotechnol; 2008 Jan; 144(1):79-85. PubMed ID: 18415989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Open fermentative production of L-lactic acid by Bacillus sp. strain NL01 using lignocellulosic hydrolyzates as low-cost raw material.
    Ouyang J; Ma R; Zheng Z; Cai C; Zhang M; Jiang T
    Bioresour Technol; 2013 May; 135():475-80. PubMed ID: 23127843
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SSF production of lactic acid from cellulosic biosludges.
    Romaní A; Yáñez R; Garrote G; Alonso JL
    Bioresour Technol; 2008 Jul; 99(10):4247-54. PubMed ID: 17928224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of a pH feedback-controlled substrate feeding method in lactic acid production.
    Zhang Y; Cong W; Shi S
    Appl Biochem Biotechnol; 2010 Dec; 162(8):2149-56. PubMed ID: 20503104
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of the metabolism pathway on lactic acid production from hemicellulosic trimming vine shoots hydrolyzates using Lactobacillus pentosus.
    Bustos G; Moldes AB; Cruz JM; Domínguez JM
    Biotechnol Prog; 2005; 21(3):793-8. PubMed ID: 15932258
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined utilization of nutrients and sugar derived from wheat bran for d-Lactate fermentation by Sporolactobacillus inulinus YBS1-5.
    Li J; Sun J; Wu B; He B
    Bioresour Technol; 2017 Apr; 229():33-38. PubMed ID: 28092734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lactic acid and methane: improved exploitation of biowaste potential.
    Dreschke G; Probst M; Walter A; Pümpel T; Walde J; Insam H
    Bioresour Technol; 2015 Jan; 176():47-55. PubMed ID: 25460983
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cereal-based biorefinery development: utilisation of wheat milling by-products for the production of succinic acid.
    Dorado MP; Lin SK; Koutinas A; Du C; Wang R; Webb C
    J Biotechnol; 2009 Aug; 143(1):51-9. PubMed ID: 19539669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of lactic acid and fructose from media with cane sugar using mutant of Lactobacillus delbrueckii NCIM 2365.
    Patil SS; Kadam SR; Patil SS; Bastawde KB; Khire JM; Gokhale DV
    Lett Appl Microbiol; 2006 Jul; 43(1):53-7. PubMed ID: 16834721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.