These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 25616238)
41. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta. Okamoto K; Nitta Y; Maekawa N; Yanase H Enzyme Microb Technol; 2011 Mar; 48(3):273-7. PubMed ID: 22112911 [TBL] [Abstract][Full Text] [Related]
42. Characterization of ethanol fermentation waste and its application to lactic acid production by Lactobacillus paracasei. Moon SK; Lee J; Song H; Cho JH; Choi GW; Seung D Bioprocess Biosyst Eng; 2013 May; 36(5):547-54. PubMed ID: 22907566 [TBL] [Abstract][Full Text] [Related]
43. Direct production of L+-lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011. Ohkouchi Y; Inoue Y Bioresour Technol; 2006 Sep; 97(13):1554-62. PubMed ID: 16051483 [TBL] [Abstract][Full Text] [Related]
45. Phytase production by Aspergillus oryzae in solid-state fermentation and its applicability in dephytinization of wheat bran [corrected]. Sapna ; Singh B Appl Biochem Biotechnol; 2014 Aug; 173(7):1885-95. PubMed ID: 24879597 [TBL] [Abstract][Full Text] [Related]
46. Facilitation of l-Lactic Acid Fermentation by Lignocellulose Biomass Rich in Vitamin B Compounds. Han X; Li L; Wei C; Zhang J; Bao J J Agric Food Chem; 2019 Jun; 67(25):7082-7086. PubMed ID: 31199642 [TBL] [Abstract][Full Text] [Related]
47. Improvement of L-lactic acid production from Jerusalem artichoke tubers by mixed culture of Aspergillus niger and Lactobacillus sp. Ge XY; Qian H; Zhang WG Bioresour Technol; 2009 Mar; 100(5):1872-4. PubMed ID: 18990562 [TBL] [Abstract][Full Text] [Related]
48. Production of Lactic Acid from Carob, Banana and Sugarcane Lignocellulose Biomass. Azaizeh H; Abu Tayeh HN; Schneider R; Klongklaew A; Venus J Molecules; 2020 Jun; 25(13):. PubMed ID: 32605022 [TBL] [Abstract][Full Text] [Related]
49. Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Talebnia F; Karakashev D; Angelidaki I Bioresour Technol; 2010 Jul; 101(13):4744-53. PubMed ID: 20031394 [TBL] [Abstract][Full Text] [Related]
50. Enhanced L-lactic acid production from biomass-derived xylose by a mutant Bacillus coagulans. Zheng Z; Cai C; Jiang T; Zhao M; Ouyang J Appl Biochem Biotechnol; 2014 Aug; 173(7):1896-906. PubMed ID: 24879598 [TBL] [Abstract][Full Text] [Related]
51. Modeling the continuous lactic acid production process from wheat flour. Gonzalez K; Tebbani S; Lopes F; Thorigné A; Givry S; Dumur D; Pareau D Appl Microbiol Biotechnol; 2016 Jan; 100(1):147-59. PubMed ID: 26399412 [TBL] [Abstract][Full Text] [Related]
52. Model-based characterisation of growth performance and l-lactic acid production with high optical purity by thermophilic Bacillus coagulans in a lignin-supplemented mixed substrate medium. Glaser R; Venus J N Biotechnol; 2017 Jul; 37(Pt B):180-193. PubMed ID: 28188935 [TBL] [Abstract][Full Text] [Related]
53. Effect of nutrients on fermentation of pretreated wheat straw at very high dry matter content by Saccharomyces cerevisiae. Jørgensen H Appl Biochem Biotechnol; 2009 May; 153(1-3):44-57. PubMed ID: 19093228 [TBL] [Abstract][Full Text] [Related]
54. Efficient production of l-lactic acid from hydrolysate of Jerusalem artichoke with immobilized cells of Lactococcus lactis in fibrous bed bioreactors. Shi Z; Wei P; Zhu X; Cai J; Huang L; Xu Z Enzyme Microb Technol; 2012 Oct; 51(5):263-8. PubMed ID: 22975123 [TBL] [Abstract][Full Text] [Related]
55. Utilization of solid catfish manure waste as carbon and nutrient source for lactic acid production. Shi S; Li J; Blersch DM Appl Microbiol Biotechnol; 2018 Jun; 102(11):4765-4772. PubMed ID: 29675802 [TBL] [Abstract][Full Text] [Related]
56. Fermentation of de-oiled algal biomass by Lactobacillus casei for production of lactic acid. Overbeck T; Steele JL; Broadbent JR Bioprocess Biosyst Eng; 2016 Dec; 39(12):1817-1823. PubMed ID: 27503484 [TBL] [Abstract][Full Text] [Related]
57. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production? Cannella D; Jørgensen H Biotechnol Bioeng; 2014 Jan; 111(1):59-68. PubMed ID: 24022674 [TBL] [Abstract][Full Text] [Related]
58. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp with Mixed Bacterial Cultures for Lactic Acid and Propylene Glycol Production. Berlowska J; Cieciura W; Borowski S; Dudkiewicz M; Binczarski M; Witonska I; Otlewska A; Kregiel D Molecules; 2016 Oct; 21(10):. PubMed ID: 27763527 [TBL] [Abstract][Full Text] [Related]
59. Investigations on a wheat bran biorefinery involving organosolv fractionation and enzymatic treatment. Reisinger M; Tirpanalan Ö; Huber F; Kneifel W; Novalin S Bioresour Technol; 2014 Oct; 170():53-61. PubMed ID: 25123327 [TBL] [Abstract][Full Text] [Related]
60. A sustainable woody biomass biorefinery. Liu S; Lu H; Hu R; Shupe A; Lin L; Liang B Biotechnol Adv; 2012; 30(4):785-810. PubMed ID: 22306164 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]