These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 25616330)

  • 1. Phage selection of bicyclic peptides based on two disulfide bridges.
    Chen S; Heinis C
    Methods Mol Biol; 2015; 1248():119-37. PubMed ID: 25616330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phage Selection of Cyclic Peptides for Application in Research and Drug Development.
    Deyle K; Kong XD; Heinis C
    Acc Chem Res; 2017 Aug; 50(8):1866-1874. PubMed ID: 28719188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo discovery of bioactive cyclic peptides using bacterial display and flow cytometry.
    Shivange AV; Daugherty PS
    Methods Mol Biol; 2015; 1248():139-53. PubMed ID: 25616331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A phage display-based strategy for the de novo creation of disulfide-constrained and isomer-free bicyclic peptide affinity reagents.
    Zha M; Lin P; Yao H; Zhao Y; Wu C
    Chem Commun (Camb); 2018 Apr; 54(32):4029-4032. PubMed ID: 29619474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bicyclic Peptides as Next-Generation Therapeutics.
    Rhodes CA; Pei D
    Chemistry; 2017 Sep; 23(52):12690-12703. PubMed ID: 28590540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phage selection of bicyclic peptides.
    Rentero Rebollo I; Heinis C
    Methods; 2013 Mar; 60(1):46-54. PubMed ID: 23313750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phage Selection of Bicyclic Peptide Ligands of the Notch1 Receptor.
    Urech-Varenne C; Radtke F; Heinis C
    ChemMedChem; 2015 Oct; 10(10):1754-61. PubMed ID: 26381087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bicyclic peptide antagonists derived from genetically encoded combinatorial libraries.
    Heinis C
    Chimia (Aarau); 2011; 65(9):677-9. PubMed ID: 22026178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structurally diverse cyclisation linkers impose different backbone conformations in bicyclic peptides.
    Chen S; Morales-Sanfrutos J; Angelini A; Cutting B; Heinis C
    Chembiochem; 2012 May; 13(7):1032-8. PubMed ID: 22492661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed evolution of bicyclic peptides for therapeutic application.
    Diderich P; Heinis C
    Chimia (Aarau); 2013; 67(12-13):910-5. PubMed ID: 24594337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bicyclic peptide ligands pulled out of cysteine-rich peptide libraries.
    Chen S; Rentero Rebollo I; Buth SA; Morales-Sanfrutos J; Touati J; Leiman PG; Heinis C
    J Am Chem Soc; 2013 May; 135(17):6562-9. PubMed ID: 23560397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phage-encoded combinatorial chemical libraries based on bicyclic peptides.
    Heinis C; Rutherford T; Freund S; Winter G
    Nat Chem Biol; 2009 Jul; 5(7):502-7. PubMed ID: 19483697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of DNA-Encoded Disulfide- and Thioether-Cyclized Peptides.
    Pham MV; Bergeron-Brlek M; Heinis C
    Chembiochem; 2020 Feb; 21(4):543-549. PubMed ID: 31381227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of Peptide-Bismuth Bicycles Using Phage Display.
    He RN; Zhang MJ; Dai B; Kong XD
    ACS Chem Biol; 2024 May; 19(5):1040-1044. PubMed ID: 38620022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly selective cyclic peptide ligands for NeutrAvidin and avidin identified by phage display.
    Meyer SC; Gaj T; Ghosh I
    Chem Biol Drug Des; 2006 Jul; 68(1):3-10. PubMed ID: 16923020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of bicyclic organo-peptide hybrids via oxime/intein-mediated macrocyclization followed by disulfide bond formation.
    Smith JM; Hill NC; Krasniak PJ; Fasan R
    Org Biomol Chem; 2014 Feb; 12(7):1135-42. PubMed ID: 24395107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Genetically Encoded, Phage-Displayed Cyclic-Peptide Library.
    Wang XS; Chen PC; Hampton JT; Tharp JM; Reed CA; Das SK; Wang DS; Hayatshahi HS; Shen Y; Liu J; Liu WR
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15904-15909. PubMed ID: 31398275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disulfide-rich macrocyclic peptides as templates in drug design.
    Northfield SE; Wang CK; Schroeder CI; Durek T; Kan MW; Swedberg JE; Craik DJ
    Eur J Med Chem; 2014 Apr; 77():248-57. PubMed ID: 24650712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of Cyclic Peptide Binders from Chemically Constrained Yeast Display Libraries.
    Bacon K; Menegatti S; Rao BM
    Methods Mol Biol; 2022; 2491():387-415. PubMed ID: 35482201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening of cyclic peptide phage libraries identifies ligands that bind streptavidin with high affinities.
    Giebel LB; Cass RT; Milligan DL; Young DC; Arze R; Johnson CR
    Biochemistry; 1995 Nov; 34(47):15430-5. PubMed ID: 7492543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.