These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 25616332)

  • 61. Omniligase-1-Mediated Phage-Peptide Library Modification and Insulin Engineering.
    Zhang YW; Lin NP; Guo X; Szabo-Fresnais N; Ortoleva PJ; Chou DH
    ACS Chem Biol; 2024 Feb; 19(2):506-515. PubMed ID: 38266161
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Biopanning of phage displayed peptide libraries for the isolation of cell-specific ligands.
    McGuire MJ; Li S; Brown KC
    Methods Mol Biol; 2009; 504():291-321. PubMed ID: 19159104
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Compositional Bias in Naïve and Chemically-modified Phage-Displayed Libraries uncovered by Paired-end Deep Sequencing.
    He B; Tjhung KF; Bennett NJ; Chou Y; Rau A; Huang J; Derda R
    Sci Rep; 2018 Jan; 8(1):1214. PubMed ID: 29352178
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A general route for post-translational cyclization of mRNA display libraries.
    Millward SW; Takahashi TT; Roberts RW
    J Am Chem Soc; 2005 Oct; 127(41):14142-3. PubMed ID: 16218582
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Phage-encoded bismuth bicycles enable instant access to targeted bioactive peptides.
    Ullrich S; Somathilake U; Shang M; Nitsche C
    Commun Chem; 2024 Jun; 7(1):143. PubMed ID: 38937646
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Disulfide-constrained peptide scaffolds enable a robust peptide-therapeutic discovery platform.
    Zhou L; Cai F; Li Y; Gao X; Wei Y; Fedorova A; Kirchhofer D; Hannoush RN; Zhang Y
    PLoS One; 2024; 19(3):e0300135. PubMed ID: 38547109
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Cysteine-Directed Proximity-Driven Crosslinking Method for Native Peptide Bicyclization.
    Chen FJ; Pinnette N; Yang F; Gao J
    Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202306813. PubMed ID: 37285100
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Pharmacophore generation from a drug-like core molecule surrounded by a library peptide via the 10BASEd-T on bacteriophage T7.
    Tokunaga Y; Azetsu Y; Fukunaga K; Hatanaka T; Ito Y; Taki M
    Molecules; 2014 Feb; 19(2):2481-96. PubMed ID: 24566316
    [TBL] [Abstract][Full Text] [Related]  

  • 69. N-Terminal cysteine mediated backbone-side chain cyclization for chemically enhanced phage display.
    Zheng M; Haeffner F; Gao J
    Chem Sci; 2022 Jul; 13(28):8349-8354. PubMed ID: 35919713
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Unnatural RNA display libraries.
    Frankel A; Li S; Starck SR; Roberts RW
    Curr Opin Struct Biol; 2003 Aug; 13(4):506-12. PubMed ID: 12948781
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Employing unnatural promiscuity of sortase to construct peptide macrocycle libraries for ligand discovery.
    Zhang YN; Wan XC; Tang Y; Chen Y; Zheng FH; Cui ZH; Zhang H; Zhou Z; Fang GM
    Chem Sci; 2024 Jun; 15(25):9649-9656. PubMed ID: 38939140
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The Symmetric Tetravalent Sulfhydryl-Specific Linker NATBA Facilitates a Combinatorial "Tool Kit" Strategy for Phage Display-Based Selection of Functionalized Bicyclic Peptides.
    Ernst C; Sindlinger J; Schwarzer D; Koch P; Boeckler FM
    ACS Omega; 2018 Oct; 3(10):12361-12368. PubMed ID: 30411004
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Genetically-encoded discovery of proteolytically stable bicyclic inhibitors for morphogen NODAL.
    Wong JY; Mukherjee R; Miao J; Bilyk O; Triana V; Miskolzie M; Henninot A; Dwyer JJ; Kharchenko S; Iampolska A; Volochnyuk DM; Lin YS; Postovit LM; Derda R
    Chem Sci; 2021 Jul; 12(28):9694-9703. PubMed ID: 34349940
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Linker-free incorporation of carbohydrates into
    Jongkees SAK; Umemoto S; Suga H
    Chem Sci; 2017 Feb; 8(2):1474-1481. PubMed ID: 28572907
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Learning the structure-activity relationship (SAR) of the Wittig reaction from genetically-encoded substrates.
    Yan K; Triana V; Kalmady SV; Aku-Dominguez K; Memon S; Brown A; Greiner R; Derda R
    Chem Sci; 2021 Nov; 12(42):14301-14308. PubMed ID: 34760216
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Genetically Encoded Cyclic Peptide Phage Display Libraries.
    Simonetti L; Ivarsson Y
    ACS Cent Sci; 2020 Mar; 6(3):336-338. PubMed ID: 32232131
    [No Abstract]   [Full Text] [Related]  

  • 77. Silent Encoding of Chemical Post-Translational Modifications in Phage-Displayed Libraries.
    Tjhung KF; Kitov PI; Ng S; Kitova EN; Deng L; Klassen JS; Derda R
    J Am Chem Soc; 2016 Jan; 138(1):32-5. PubMed ID: 26683999
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Next-generation sequencing of phage-displayed peptide libraries.
    Matochko WL; Derda R
    Methods Mol Biol; 2015; 1248():249-66. PubMed ID: 25616338
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Phage-displayed macrocyclic glycopeptide libraries.
    Ng S; Derda R
    Org Biomol Chem; 2016 Jun; 14(24):5539-45. PubMed ID: 26889738
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Maleimide-based method for elaboration of cysteine-containing peptide phage libraries.
    Santoso B; Murray BW
    Methods Mol Biol; 2015; 1248():267-76. PubMed ID: 25616339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.