BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 25616418)

  • 1. GSK3 inhibitors stabilize Wee1 and reduce cerebellar granule cell progenitor proliferation.
    Penas C; Mishra JK; Wood SD; Schürer SC; Roush WR; Ayad NG
    Cell Cycle; 2015; 14(3):417-24. PubMed ID: 25616418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Casein kinase 1δ-dependent Wee1 protein degradation.
    Penas C; Ramachandran V; Simanski S; Lee C; Madoux F; Rahaim RJ; Chauhan R; Barnaby O; Schurer S; Hodder P; Steen J; Roush WR; Ayad NG
    J Biol Chem; 2014 Jul; 289(27):18893-903. PubMed ID: 24817118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redundant ubiquitin ligase activities regulate wee1 degradation and mitotic entry.
    Smith A; Simanski S; Fallahi M; Ayad NG
    Cell Cycle; 2007 Nov; 6(22):2795-9. PubMed ID: 18032919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP.
    Watanabe N; Arai H; Nishihara Y; Taniguchi M; Watanabe N; Hunter T; Osada H
    Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4419-24. PubMed ID: 15070733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GSK3-SCF(FBXW7) targets JunB for degradation in G2 to preserve chromatid cohesion before anaphase.
    Pérez-Benavente B; García JL; Rodríguez MS; Pineda-Lucena A; Piechaczyk M; Font de Mora J; Farràs R
    Oncogene; 2013 Apr; 32(17):2189-99. PubMed ID: 22710716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation domain-dependent degradation of somatic Wee1 kinase.
    Owens L; Simanski S; Squire C; Smith A; Cartzendafner J; Cavett V; Caldwell Busby J; Sato T; Ayad NG
    J Biol Chem; 2010 Feb; 285(9):6761-9. PubMed ID: 20038582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ability of CK2beta to selectively regulate cellular protein kinases.
    Olsen BB; Guerra B
    Mol Cell Biochem; 2008 Sep; 316(1-2):115-26. PubMed ID: 18560763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways.
    Watanabe N; Arai H; Iwasaki J; Shiina M; Ogata K; Hunter T; Osada H
    Proc Natl Acad Sci U S A; 2005 Aug; 102(33):11663-8. PubMed ID: 16085715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel mechanism by which thiazolidinediones facilitate the proteasomal degradation of cyclin D1 in cancer cells.
    Wei S; Yang HC; Chuang HC; Yang J; Kulp SK; Lu PJ; Lai MD; Chen CS
    J Biol Chem; 2008 Sep; 283(39):26759-70. PubMed ID: 18650423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. F-box proteins Pof3 and Pof1 regulate Wee1 degradation and mitotic entry in fission yeast.
    Qiu C; Yi YY; Lucena R; Wu MJ; Sun JH; Wang X; Jin QW; Wang Y
    J Cell Sci; 2018 Feb; 131(3):. PubMed ID: 29361524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low concentrations of methylmercury inhibit neural progenitor cell proliferation associated with up-regulation of glycogen synthase kinase 3β and subsequent degradation of cyclin E in rats.
    Fujimura M; Usuki F
    Toxicol Appl Pharmacol; 2015 Oct; 288(1):19-25. PubMed ID: 26184774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological inactivation of CHK1 and WEE1 induces mitotic catastrophe in nasopharyngeal carcinoma cells.
    Mak JP; Man WY; Chow JP; Ma HT; Poon RY
    Oncotarget; 2015 Aug; 6(25):21074-84. PubMed ID: 26025928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WEE1 kinase limits CDK activities to safeguard DNA replication and mitotic entry.
    Elbæk CR; Petrosius V; Sørensen CS
    Mutat Res; 2020; 819-820():111694. PubMed ID: 32120135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The regulatory beta-subunit of protein kinase CK2 regulates cell-cycle progression at the onset of mitosis.
    Yde CW; Olsen BB; Meek D; Watanabe N; Guerra B
    Oncogene; 2008 Aug; 27(37):4986-97. PubMed ID: 18469858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ultra-high throughput cell-based screen for wee1 degradation inhibitors.
    Madoux F; Simanski S; Chase P; Mishra JK; Roush WR; Ayad NG; Hodder P
    J Biomol Screen; 2010 Sep; 15(8):907-17. PubMed ID: 20660794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bifunctional regulatory element in human somatic Wee1 mediates cyclin A/Cdk2 binding and Crm1-dependent nuclear export.
    Li C; Andrake M; Dunbrack R; Enders GH
    Mol Cell Biol; 2010 Jan; 30(1):116-30. PubMed ID: 19858290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytokinetic effects of Wee1 disruption in pancreatic cancer.
    Chang Q; Chandrashekhar M; Ketela T; Fedyshyn Y; Moffat J; Hedley D
    Cell Cycle; 2016; 15(4):593-604. PubMed ID: 26890070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential properties of mitosis-associated events following CHK1 and WEE1 inhibitor treatments in human tongue carcinoma cells.
    Nojima H; Homma H; Onozato Y; Kaida A; Harada H; Miura M
    Exp Cell Res; 2020 Jan; 386(2):111720. PubMed ID: 31738907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C/EBPβ Is a Transcriptional Regulator of Wee1 at the G₂/M Phase of the Cell Cycle.
    Lee JH; Sung JY; Choi EK; Yoon HK; Kang BR; Hong EK; Park BK; Kim YN; Rho SB; Yoon K
    Cells; 2019 Feb; 8(2):. PubMed ID: 30754676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping of the interaction sites between Wee1 kinase and the regulatory beta-subunit of protein kinase CK2.
    Olsen BB; Kreutzer JN; Watanabe N; Holm T; Guerra B
    Int J Oncol; 2010 May; 36(5):1175-82. PubMed ID: 20372791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.