These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25616805)

  • 1. Transfer of plasmid DNA to clinical coagulase-negative staphylococcal pathogens by using a unique bacteriophage.
    Winstel V; Kühner P; Krismer B; Peschel A; Rohde H
    Appl Environ Microbiol; 2015 Apr; 81(7):2481-8. PubMed ID: 25616805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic engineering of untransformable coagulase-negative staphylococcal pathogens.
    Winstel V; Kühner P; Rohde H; Peschel A
    Nat Protoc; 2016 May; 11(5):949-59. PubMed ID: 27101516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Staphylococcus epidermidis Phages Transduce Antimicrobial Resistance Plasmids and Mobilize Chromosomal Islands.
    Fišarová L; Botka T; Du X; Mašlaňová I; Bárdy P; Pantůček R; Benešík M; Roudnický P; Winstel V; Larsen J; Rosenstein R; Peschel A; Doškař J
    mSphere; 2021 May; 6(3):. PubMed ID: 33980677
    [No Abstract]   [Full Text] [Related]  

  • 4. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA.
    Marraffini LA; Sontheimer EJ
    Science; 2008 Dec; 322(5909):1843-5. PubMed ID: 19095942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Genetic transfer of methycilline resistance in Staphylococus epidermidis and Staphylococcus aureus strains in mixed cultures].
    Młynarczyk A; Młynarczyk G; Jeljaszewicz J
    Med Dosw Mikrobiol; 1999; 51(3-4):199-205. PubMed ID: 10803248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic manipulation of Staphylococci-breaking through the barrier.
    Monk IR; Foster TJ
    Front Cell Infect Microbiol; 2012; 2():49. PubMed ID: 22919640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient plasmid transduction to Staphylococcus aureus strains insensitive to the lytic action of transducing phage.
    Mašlaňová I; Stříbná S; Doškař J; Pantůček R
    FEMS Microbiol Lett; 2016 Oct; 363(19):. PubMed ID: 27609232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis.
    Monk IR; Shah IM; Xu M; Tan MW; Foster TJ
    mBio; 2012; 3(2):. PubMed ID: 22434850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mining the Methylome Reveals Extensive Diversity in Staphylococcus epidermidis Restriction Modification.
    Lee JYH; Carter GP; Pidot SJ; Guérillot R; Seemann T; Gonçalves da Silva A; Foster TJ; Howden BP; Stinear TP; Monk IR
    mBio; 2019 Dec; 10(6):. PubMed ID: 31848274
    [No Abstract]   [Full Text] [Related]  

  • 10. Wall teichoic acid substitution with glucose governs phage susceptibility of
    Beck C; Krusche J; Notaro A; Walter A; Kränkel L; Vollert A; Stemmler R; Wittmann J; Schaller M; Slavetinsky C; Mayer C; De Castro C; Peschel A
    mBio; 2024 Apr; 15(4):e0199023. PubMed ID: 38470054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic Analysis of the Unusual Staphylococcus aureus ST630 Isolates Harboring WTA Glycosyltransferase Genes
    Xiong M; Chen L; Zhao J; Xiao X; Zhou J; Fang F; Li X; Pan Y; Li Y
    Microbiol Spectr; 2022 Feb; 10(1):e0150121. PubMed ID: 35170993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cas10 assisted editing of virulent staphylococcal phages.
    Nayeemul Bari SM; Hatoum-Aslan A
    Methods Enzymol; 2019; 616():385-409. PubMed ID: 30691652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the features of 45 identified CRISPR loci in 32 Staphylococcus aureus.
    Yang S; Liu J; Shao F; Wang P; Duan G; Yang H
    Biochem Biophys Res Commun; 2015 Aug; 464(3):894-900. PubMed ID: 26188514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobilization of recombinant plasmids from Staphylococcus aureus into coagulase negative Staphylococcus species.
    Thomas WD; Archer GL
    Plasmid; 1992 Mar; 27(2):164-8. PubMed ID: 1615065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phage Transduction of Staphylococcus aureus.
    Chu Yuan Kee MJ; Chen J
    Methods Mol Biol; 2024; 2738():263-275. PubMed ID: 37966605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of the unique wall teichoic acid of Staphylococcus aureus lineage ST395.
    Winstel V; Sanchez-Carballo P; Holst O; Xia G; Peschel A
    mBio; 2014 Apr; 5(2):e00869. PubMed ID: 24713320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multidrug resistance plasmid pSK108 from coagulase-negative staphylococci; relationships to Staphylococcus aureus qacC plasmids.
    Leelaporn A; Firth N; Paulsen IT; Hettiaratchi A; Skurray RA
    Plasmid; 1995 Jul; 34(1):62-7. PubMed ID: 7480172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer of plasmid-borne aminoglycoside-resistance determinants in staphylococci.
    Townsend DE; Bolton S; Ashdown N; Grubb WB
    J Med Microbiol; 1985 Oct; 20(2):169-85. PubMed ID: 2931527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Method for Preparation and Electroporation of S. aureus and S. epidermidis.
    Grosser MR; Richardson AR
    Methods Mol Biol; 2016; 1373():51-7. PubMed ID: 25966876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intra- and inter-species mobilisation of non-conjugative plasmids in staphylococci.
    Udo EE; Love H; Grubb WB
    J Med Microbiol; 1992 Sep; 37(3):180-6. PubMed ID: 1325561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.