These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 25616934)
1. Integrating docking and molecular dynamics approaches for a series of proline-based 2,5-diketopiperazines as novel αβ-tubulin inhibitors. Fani N; Bordbar AK; Ghayeb Y; Sepehri S J Biomol Struct Dyn; 2015; 33(10):2285-95. PubMed ID: 25616934 [TBL] [Abstract][Full Text] [Related]
2. Computational design of Tryprostatin-A derivatives as novel αβ-tubulin inhibitors. Fani N; Bordbar AK; Ghayeb Y; Sepehri S J Biomol Struct Dyn; 2015; 33(3):471-86. PubMed ID: 24606044 [TBL] [Abstract][Full Text] [Related]
3. Theoretical insight into the structural mechanism for the binding of vinblastine with tubulin. Chi S; Xie W; Zhang J; Xu S J Biomol Struct Dyn; 2015; 33(10):2234-54. PubMed ID: 25588192 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the effect of the chiral centers of Taxol on binding to β-tubulin: A docking and molecular dynamics simulation study. Ghadari R; Alavi FS; Zahedi M Comput Biol Chem; 2015 Jun; 56():33-40. PubMed ID: 25854803 [TBL] [Abstract][Full Text] [Related]
5. Design, synthesis and biological evaluation of (E)-3-(3,4-dihydroxyphenyl)acrylylpiperazine derivatives as a new class of tubulin polymerization inhibitors. Yin Y; Qiao F; Jiang LY; Wang SF; Sha S; Wu X; Lv PC; Zhu HL Bioorg Med Chem; 2014 Aug; 22(15):4285-92. PubMed ID: 24916028 [TBL] [Abstract][Full Text] [Related]
6. Structure-based approaches for the design of benzimidazole-2-carbamate derivatives as tubulin polymerization inhibitors. Aguayo-Ortiz R; Cano-González L; Castillo R; Hernández-Campos A; Dominguez L Chem Biol Drug Des; 2017 Jul; 90(1):40-51. PubMed ID: 28004475 [TBL] [Abstract][Full Text] [Related]
7. Microtubules dual chemo and thermo-responsive depolymerization. Li Z; Alisaraie L Proteins; 2015 May; 83(5):970-81. PubMed ID: 25739855 [TBL] [Abstract][Full Text] [Related]
8. Structural insights into the design of indole derivatives as tubulin polymerization inhibitors. Li Y; Yang J; Niu L; Hu D; Li H; Chen L; Yu Y; Chen Q FEBS Lett; 2020 Jan; 594(1):199-204. PubMed ID: 31369682 [TBL] [Abstract][Full Text] [Related]
9. Interaction of microtubule depolymerizing agent indanocine with different human αβ tubulin isotypes. Kumbhar BV; Panda D; Kunwar A PLoS One; 2018; 13(3):e0194934. PubMed ID: 29584771 [TBL] [Abstract][Full Text] [Related]
10. A comparative study based on docking and molecular dynamics simulations over HDAC-tubulin dual inhibitors. Hassanzadeh M; Bagherzadeh K; Amanlou M J Mol Graph Model; 2016 Nov; 70():170-180. PubMed ID: 27750186 [TBL] [Abstract][Full Text] [Related]
11. Discovery of novel tubulin inhibitors via structure-based hierarchical virtual screening. Cao R; Liu M; Yin M; Liu Q; Wang Y; Huang N J Chem Inf Model; 2012 Oct; 52(10):2730-40. PubMed ID: 22992059 [TBL] [Abstract][Full Text] [Related]
12. Molecular basis for benzimidazole resistance from a novel β-tubulin binding site model. Aguayo-Ortiz R; Méndez-Lucio O; Romo-Mancillas A; Castillo R; Yépez-Mulia L; Medina-Franco JL; Hernández-Campos A J Mol Graph Model; 2013 Sep; 45():26-37. PubMed ID: 23995453 [TBL] [Abstract][Full Text] [Related]
13. QM and QM/MD simulations of the Vinca alkaloids docked to tubulin. Kelly EB; Tuszynski JA; Klobukowski M J Mol Graph Model; 2011 Sep; 30():54-66. PubMed ID: 21798777 [TBL] [Abstract][Full Text] [Related]
14. The Unique Binding Mode of Laulimalide to Two Tubulin Protofilaments. Churchill CD; Klobukowski M; Tuszynski JA Chem Biol Drug Des; 2015 Aug; 86(2):190-9. PubMed ID: 25376845 [TBL] [Abstract][Full Text] [Related]
15. Tubulin inhibitors targeting the colchicine binding site: a perspective of privileged structures. Li W; Sun H; Xu S; Zhu Z; Xu J Future Med Chem; 2017 Oct; 9(15):1765-1794. PubMed ID: 28929799 [TBL] [Abstract][Full Text] [Related]
16. Structural insight into the role of Gln293Met mutation on the Peloruside A/Laulimalide association with αβ-tubulin from molecular dynamics simulations, binding free energy calculations and weak interactions analysis. Zúñiga MA; Alderete JB; Jaña GA; Jiménez VA J Comput Aided Mol Des; 2017 Jul; 31(7):643-652. PubMed ID: 28597356 [TBL] [Abstract][Full Text] [Related]
17. Structural investigations into the binding mode of novel neolignans Cmp10 and Cmp19 microtubule stabilizers by in silico molecular docking, molecular dynamics, and binding free energy calculations. Tripathi S; Kumar A; Kumar BS; Negi AS; Sharma A J Biomol Struct Dyn; 2016 Jun; 34(6):1232-40. PubMed ID: 26212016 [TBL] [Abstract][Full Text] [Related]
18. Exploration of the binding mode between (-)-zampanolide and tubulin using docking and molecular dynamics simulation. Liao SY; Mo GQ; Chen JC; Zheng KC J Mol Model; 2014 Feb; 20(2):2070. PubMed ID: 24478043 [TBL] [Abstract][Full Text] [Related]
19. Structural insight into epothilones antitumor activity based on the conformational preferences and tubulin binding modes of epothilones A and B obtained from molecular dynamics simulations. Jiménez VA; Alderete JB; Navarrete KR J Biomol Struct Dyn; 2015; 33(4):789-803. PubMed ID: 24773261 [TBL] [Abstract][Full Text] [Related]
20. Docking and molecular dynamics studies of the binding between Peloruside A and tubulin. Liao SY; Mo GQ; Chen JC; Zheng KC J Enzyme Inhib Med Chem; 2014 Oct; 29(5):702-9. PubMed ID: 24156744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]