These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 25617131)
1. Enhanced antitumor efficacies of multifunctional nanocomplexes through knocking down the barriers for siRNA delivery. Han L; Tang C; Yin C Biomaterials; 2015 Mar; 44():111-21. PubMed ID: 25617131 [TBL] [Abstract][Full Text] [Related]
2. Dual-targeting and pH/redox-responsive multi-layered nanocomplexes for smart co-delivery of doxorubicin and siRNA. Han L; Tang C; Yin C Biomaterials; 2015 Aug; 60():42-52. PubMed ID: 25982552 [TBL] [Abstract][Full Text] [Related]
3. Self-assembly cationic nanoparticles based on cholesterol-grafted bioreducible poly(amidoamine) for siRNA delivery. Chen CJ; Wang JC; Zhao EY; Gao LY; Feng Q; Liu XY; Zhao ZX; Ma XF; Hou WJ; Zhang LR; Lu WL; Zhang Q Biomaterials; 2013 Jul; 34(21):5303-16. PubMed ID: 23570718 [TBL] [Abstract][Full Text] [Related]
4. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy. Xie Y; Qiao H; Su Z; Chen M; Ping Q; Sun M Biomaterials; 2014 Sep; 35(27):7978-91. PubMed ID: 24939077 [TBL] [Abstract][Full Text] [Related]
5. Effect of binding affinity for siRNA on the in vivo antitumor efficacy of polyplexes. Han L; Tang C; Yin C Biomaterials; 2013 Jul; 34(21):5317-27. PubMed ID: 23591392 [TBL] [Abstract][Full Text] [Related]
6. Systemic delivery of therapeutic small interfering RNA using a pH-triggered amphiphilic poly-L-lysine nanocarrier to suppress prostate cancer growth in mice. Guo J; Cheng WP; Gu J; Ding C; Qu X; Yang Z; O'Driscoll C Eur J Pharm Sci; 2012 Apr; 45(5):521-32. PubMed ID: 22186295 [TBL] [Abstract][Full Text] [Related]
7. Oral delivery of shRNA based on amino acid modified chitosan for improved antitumor efficacy. Zheng H; Tang C; Yin C Biomaterials; 2015 Nov; 70():126-37. PubMed ID: 26310108 [TBL] [Abstract][Full Text] [Related]
8. Enhanced siRNA delivery and silencing gold-chitosan nanosystem with surface charge-reversal polymer assembly and good biocompatibility. Han L; Zhao J; Zhang X; Cao W; Hu X; Zou G; Duan X; Liang XJ ACS Nano; 2012 Aug; 6(8):7340-51. PubMed ID: 22838646 [TBL] [Abstract][Full Text] [Related]
9. Oral delivery of shRNA and siRNA via multifunctional polymeric nanoparticles for synergistic cancer therapy. Han L; Tang C; Yin C Biomaterials; 2014 May; 35(15):4589-600. PubMed ID: 24613049 [TBL] [Abstract][Full Text] [Related]
10. Pulmonary Codelivery of Doxorubicin and siRNA by pH-Sensitive Nanoparticles for Therapy of Metastatic Lung Cancer. Xu C; Wang P; Zhang J; Tian H; Park K; Chen X Small; 2015 Sep; 11(34):4321-33. PubMed ID: 26136261 [TBL] [Abstract][Full Text] [Related]
11. Combination antitumor immunotherapy with VEGF and PIGF siRNA via systemic delivery of multi-functionalized nanoparticles to tumor-associated macrophages and breast cancer cells. Song Y; Tang C; Yin C Biomaterials; 2018 Dec; 185():117-132. PubMed ID: 30241030 [TBL] [Abstract][Full Text] [Related]
12. Sialic Acid-Targeted Nanovectors with Phenylboronic Acid-Grafted Polyethylenimine Robustly Enhance siRNA-Based Cancer Therapy. Ji M; Li P; Sheng N; Liu L; Pan H; Wang C; Cai L; Ma Y ACS Appl Mater Interfaces; 2016 Apr; 8(15):9565-76. PubMed ID: 27007621 [TBL] [Abstract][Full Text] [Related]
13. Anti-tumor effects in mice induced by survivin-targeted siRNA delivered through polysaccharide nanoparticles. Yang F; Huang W; Li Y; Liu S; Jin M; Wang Y; Jia L; Gao Z Biomaterials; 2013 Jul; 34(22):5689-99. PubMed ID: 23632321 [TBL] [Abstract][Full Text] [Related]
14. Multifunctional polymeric nanoparticles for oral delivery of TNF-α siRNA to macrophages. He C; Yin L; Tang C; Yin C Biomaterials; 2013 Apr; 34(11):2843-54. PubMed ID: 23347838 [TBL] [Abstract][Full Text] [Related]
15. Linear polyethylenimine-graft-chitosan copolymers as efficient DNA/siRNA delivery vectors in vitro and in vivo. Tripathi SK; Goyal R; Kumar P; Gupta KC Nanomedicine; 2012 Apr; 8(3):337-45. PubMed ID: 21756861 [TBL] [Abstract][Full Text] [Related]
16. Efficient siRNA delivery and tumor accumulation mediated by ionically cross-linked folic acid-poly(ethylene glycol)-chitosan oligosaccharide lactate nanoparticles: for the potential targeted ovarian cancer gene therapy. Li TS; Yawata T; Honke K Eur J Pharm Sci; 2014 Feb; 52():48-61. PubMed ID: 24178005 [TBL] [Abstract][Full Text] [Related]
17. Enhanced endosomal escape by photothermal activation for improved small interfering RNA delivery and antitumor effect. Yang X; Fan B; Gao W; Li L; Li T; Sun J; Peng X; Li X; Wang Z; Wang B; Zhang R; Xie J Int J Nanomedicine; 2018; 13():4333-4344. PubMed ID: 30087564 [TBL] [Abstract][Full Text] [Related]
18. The use of pH-sensitive functional selenium nanoparticles shows enhanced in vivo VEGF-siRNA silencing and fluorescence imaging. Yu Q; Liu Y; Cao C; Le F; Qin X; Sun D; Liu J Nanoscale; 2014 Aug; 6(15):9279-92. PubMed ID: 24986368 [TBL] [Abstract][Full Text] [Related]
19. The pH-Triggered Triblock Nanocarrier Enabled Highly Efficient siRNA Delivery for Cancer Therapy. Du L; Zhou J; Meng L; Wang X; Wang C; Huang Y; Zheng S; Deng L; Cao H; Liang Z; Dong A; Cheng Q Theranostics; 2017; 7(14):3432-3445. PubMed ID: 28912886 [TBL] [Abstract][Full Text] [Related]
20. Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core-shell nanoparticles. Feng Q; Yu MZ; Wang JC; Hou WJ; Gao LY; Ma XF; Pei XW; Niu YJ; Liu XY; Qiu C; Pang WH; Du LL; Zhang Q Biomaterials; 2014 Jun; 35(18):5028-38. PubMed ID: 24680191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]