These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 2561760)

  • 1. Scanning electron microscopic study of cell attachment to biodegradable polymer implants.
    Zislis T; Mark DE; Cerbas EL; Hollinger JO
    J Oral Implantol; 1989; 15(3):160-7. PubMed ID: 2561760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A scanning electron microscopic study of in vitro toxicity of ethylene-oxide-sterilized bone repair materials.
    Zislis T; Martin SA; Cerbas E; Heath JR; Mansfield JL; Hollinger JO
    J Oral Implantol; 1989; 15(1):41-6. PubMed ID: 2561372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: an approach towards the development of a bone-bioerodible polymer composite material.
    Elgendy HM; Norman ME; Keaton AR; Laurencin CT
    Biomaterials; 1993; 14(4):263-9. PubMed ID: 8386557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios.
    Miller RA; Brady JM; Cutright DE
    J Biomed Mater Res; 1977 Sep; 11(5):711-9. PubMed ID: 893490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA).
    Hollinger JO
    J Biomed Mater Res; 1983 Jan; 17(1):71-82. PubMed ID: 6298242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technique to control pH in vicinity of biodegrading PLA-PGA implants.
    Agrawal CM; Athanasiou KA
    J Biomed Mater Res; 1997; 38(2):105-14. PubMed ID: 9178737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of biodegradable PLA/PLGA membranes with PGA mesh and their application for periodontal guided tissue regeneration.
    Kim EJ; Yoon SJ; Yeo GD; Pai CM; Kang IK
    Biomed Mater; 2009 Oct; 4(5):055001. PubMed ID: 19776491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone-derived growth factor release from poly(alpha-hydroxy acid) implants in vitro.
    Meikle MC; Mak WY; Papaioannou S; Davies EH; Mordan N; Reynolds JJ
    Biomaterials; 1993 Feb; 14(3):177-83. PubMed ID: 8386553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orthopaedic applications for PLA-PGA biodegradable polymers.
    Athanasiou KA; Agrawal CM; Barber FA; Burkhart SS
    Arthroscopy; 1998 Oct; 14(7):726-37. PubMed ID: 9788368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of bioerodible polymeric microspheres and microparticles by rapid expansion of supercritical solutions.
    Tom JW; Debenedetti PG
    Biotechnol Prog; 1991; 7(5):403-11. PubMed ID: 1369363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer-hydroxyapatite composites for biodegradable bone fillers.
    Higashi S; Yamamuro T; Nakamura T; Ikada Y; Hyon SH; Jamshidi K
    Biomaterials; 1986 May; 7(3):183-7. PubMed ID: 3013326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmental neogenesis of the dog esophagus utilizing a biodegradable polymer framework.
    Grower MF; Russell EA; Cutright DE
    Biomater Artif Cells Artif Organs; 1989; 17(3):291-314. PubMed ID: 2554997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of poly DL-lactide--co-glycolide implants and xenogeneic bone matrix-derived growth factors on calvarial bone repair in the rabbit.
    Meikle MC; Papaioannou S; Ratledge TJ; Speight PM; Watt-Smith SR; Hill PA; Reynolds JJ
    Biomaterials; 1994 Jun; 15(7):513-21. PubMed ID: 7918904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary experience with tissue engineering of a venous vascular patch by using bone marrow-derived cells and a hybrid biodegradable polymer scaffold.
    Cho SW; Jeon O; Lim JE; Gwak SJ; Kim SS; Choi CY; Kim DI; Kim BS
    J Vasc Surg; 2006 Dec; 44(6):1329-40. PubMed ID: 17145438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers.
    Freed LE; Marquis JC; Nohria A; Emmanual J; Mikos AG; Langer R
    J Biomed Mater Res; 1993 Jan; 27(1):11-23. PubMed ID: 8380593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone induction and bone repair by composites of bone morphogenetic protein and biodegradable synthetic polymers.
    Miyamoto S; Takaoka K
    Ann Chir Gynaecol Suppl; 1993; 207():69-75. PubMed ID: 8154840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable poly-D,L-lactic acid-polyethylene glycol block copolymers as a BMP delivery system for inducing bone.
    Saito N; Okada T; Horiuchi H; Murakami N; Takahashi J; Nawata M; Ota H; Miyamoto S; Nozaki K; Takaoka K
    J Bone Joint Surg Am; 2001; 83-A Suppl 1(Pt 2):S92-8. PubMed ID: 11314801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo experimental study on bone regeneration in critical bone defects using an injectable biodegradable PLA/PGA copolymer.
    Rimondini L; Nicoli-Aldini N; Fini M; Guzzardella G; Tschon M; Giardino R
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2005 Feb; 99(2):148-54. PubMed ID: 15660083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous-coated titanium implant impregnated with a biodegradable protein delivery system.
    Agrawal CM; Pennick A; Wang X; Schenck RC
    J Biomed Mater Res; 1997 Sep; 36(4):516-21. PubMed ID: 9294767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering.
    Marra KG; Szem JW; Kumta PN; DiMilla PA; Weiss LE
    J Biomed Mater Res; 1999 Dec; 47(3):324-35. PubMed ID: 10487883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.