BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25617617)

  • 21. Photodynamic therapy of melanoma by blue-light photoactivation of flavin mononucleotide.
    Akasov RA; Sholina NV; Khochenkov DA; Alova AV; Gorelkin PV; Erofeev AS; Generalova AN; Khaydukov EV
    Sci Rep; 2019 Jul; 9(1):9679. PubMed ID: 31273268
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacterial flavin mononucleotide riboswitches as targets for flavin analogs.
    Pedrolli DB; Mack M
    Methods Mol Biol; 2014; 1103():165-76. PubMed ID: 24318894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inactivation of milk-borne pathogens by blue light exposure.
    Dos Anjos C; Sellera FP; de Freitas LM; Gargano RG; Telles EO; Freitas RO; Baptista MS; Ribeiro MS; Lincopan N; Pogliani FC; Sabino CP
    J Dairy Sci; 2020 Feb; 103(2):1261-1268. PubMed ID: 31759598
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitation of FAD-dependent cytochrome P450 reductase activity by photoreduction.
    Hodgson AV; Strobel HW
    Anal Biochem; 1996 Dec; 243(1):154-7. PubMed ID: 8954538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Archaeal RibL: a new FAD synthetase that is air sensitive.
    Mashhadi Z; Xu H; Grochowski LL; White RH
    Biochemistry; 2010 Oct; 49(40):8748-55. PubMed ID: 20822113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proposed steady-state kinetic mechanism for Corynebacterium ammoniagenes FAD synthetase produced by Escherichia coli.
    Efimov I; Kuusk V; Zhang X; McIntire WS
    Biochemistry; 1998 Jul; 37(27):9716-23. PubMed ID: 9657684
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A bifunctional molecule as an artificial flavin mononucleotide cyclase and a chemosensor for selective fluorescent detection of flavins.
    Rhee HW; Choi SJ; Yoo SH; Jang YO; Park HH; Pinto RM; Cameselle JC; Sandoval FJ; Roje S; Han K; Chung DS; Suh J; Hong JI
    J Am Chem Soc; 2009 Jul; 131(29):10107-12. PubMed ID: 19569646
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox properties of the isolated flavin mononucleotide- and flavin adenine dinucleotide-binding domains of neuronal nitric oxide synthase.
    Garnaud PE; Koetsier M; Ost TW; Daff S
    Biochemistry; 2004 Aug; 43(34):11035-44. PubMed ID: 15323562
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The flavoprotein component of the Escherichia coli sulfite reductase: expression, purification, and spectral and catalytic properties of a monomeric form containing both the flavin adenine dinucleotide and the flavin mononucleotide cofactors.
    Zeghouf M; Fontecave M; Macherel D; Covès J
    Biochemistry; 1998 Apr; 37(17):6114-23. PubMed ID: 9558350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of FMN riboswitch on antioxidant activity in Deinococcus radiodurans under H₂O₂ stress.
    Yang P; Chen Z; Shan Z; Ding X; Liu L; Guo J
    Microbiol Res; 2014; 169(5-6):411-6. PubMed ID: 24103862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aldosterone stimulation of riboflavin incorporation into rat renal flavin coenzymes and the effect of inhibition by riboflavin analogues on sodium reabsorption.
    Trachewsky D
    J Clin Invest; 1978 Dec; 62(6):1325-33. PubMed ID: 748381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stabilization of flavin mononucleotide by capturing its "tail" with porous organic polymers for long-term photocatalytic degradation of micropollutants.
    Tang P; Ji B; Sun G
    J Hazard Mater; 2022 Aug; 435():128982. PubMed ID: 35472536
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrolysis of FMN and FAD by alkaline phosphatase of the intestinal brush-border membrane.
    Daniel H; Binninger E; Rehner G
    Int J Vitam Nutr Res; 1983; 53(1):109-14. PubMed ID: 6853053
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The importance of porphyrins in blue light suppression of Streptococcus agalactiae.
    Bumah VV; Morrow BN; Cortez PM; Bowman CR; Rojas P; Masson-Meyers DS; Suprapto J; Tong WG; Enwemeka CS
    J Photochem Photobiol B; 2020 Nov; 212():111996. PubMed ID: 32863128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ROS-mediated killing efficiency with visible light of bacteria carrying different red fluorochrome proteins.
    Waldeck W; Heidenreich E; Mueller G; Wiessler M; Tóth K; Braun K
    J Photochem Photobiol B; 2012 Apr; 109():28-33. PubMed ID: 22296652
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The physiological role of riboflavin transporter and involvement of FMN-riboswitch in its gene expression in Corynebacterium glutamicum.
    Takemoto N; Tanaka Y; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2014 May; 98(9):4159-68. PubMed ID: 24531272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rare variants of the FMN riboswitch class in
    Atilho RM; Perkins KR; Breaker RR
    RNA; 2019 Jan; 25(1):23-34. PubMed ID: 30287481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sunlight mediated inactivation mechanisms of Enterococcus faecalis and Escherichia coli in clear water versus waste stabilization pond water.
    Kadir K; Nelson KL
    Water Res; 2014 Mar; 50():307-17. PubMed ID: 24188579
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis.
    Covington ED; Gelbmann CB; Kotloski NJ; Gralnick JA
    Mol Microbiol; 2010 Oct; 78(2):519-32. PubMed ID: 20807196
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photoactivities of Two Vitamin B Derivatives and Their Applications in the Perpetration of Photoinduced Antibacterial Nanofibrous Membranes.
    Zhang Z; Pan B; Wang L; Sun G
    ACS Appl Bio Mater; 2021 Dec; 4(12):8584-8596. PubMed ID: 35005945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.