BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25617684)

  • 1. Construction of the recombinant broad-host-range plasmids providing their bacterial hosts arsenic resistance and arsenite oxidation ability.
    Drewniak L; Ciezkowska M; Radlinska M; Sklodowska A
    J Biotechnol; 2015 Feb; 196-197():42-51. PubMed ID: 25617684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional genomics of plasmid pSinA of Sinorhizobium sp. M14 encoding genes for the arsenite oxidation and arsenic resistance.
    Drewniak L; Dziewit L; Ciezkowska M; Gawor J; Gromadka R; Sklodowska A
    J Biotechnol; 2013 Apr; 164(4):479-88. PubMed ID: 23454063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constitutive arsenite oxidase expression detected in arsenic-hypertolerant Pseudomonas xanthomarina S11.
    Koechler S; Arsène-Ploetze F; Brochier-Armanet C; Goulhen-Chollet F; Heinrich-Salmeron A; Jost B; Lièvremont D; Philipps M; Plewniak F; Bertin PN; Lett MC
    Res Microbiol; 2015 Apr; 166(3):205-14. PubMed ID: 25753102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of the pSinB plasmid of the arsenite oxidizing, metallotolerant Sinorhizobium sp. M14 - insight into the heavy metal resistome of sinorhizobial extrachromosomal replicons.
    Romaniuk K; Dziewit L; Decewicz P; Mielnicki S; Radlinska M; Drewniak L
    FEMS Microbiol Ecol; 2017 Jan; 93(1):. PubMed ID: 27797963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032.
    Ordóñez E; Letek M; Valbuena N; Gil JA; Mateos LM
    Appl Environ Microbiol; 2005 Oct; 71(10):6206-15. PubMed ID: 16204540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a genetically engineered microorganism with high tolerance to arsenite and strong arsenite oxidative ability.
    Yang C; Xu L; Yan L; Xu Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(6):732-7. PubMed ID: 20390921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand.
    Anderson CR; Cook GM
    Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A plasmid-encoded arsenite pump produces arsenite resistance in Escherichia coli.
    Rosen BP; Borbolla MG
    Biochem Biophys Res Commun; 1984 Nov; 124(3):760-5. PubMed ID: 6391481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Bacterial resistance to arsenic compounds].
    Cervantes C
    Rev Latinoam Microbiol; 1995; 37(4):387-95. PubMed ID: 8900573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inducible plasmid-determined resistance to arsenate, arsenite, and antimony (III) in escherichia coli and Staphylococcus aureus.
    Silver S; Budd K; Leahy KM; Shaw WV; Hammond D; Novick RP; Willsky GR; Malamy MH; Rosenberg H
    J Bacteriol; 1981 Jun; 146(3):983-96. PubMed ID: 7016838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection and analysis of chromosomal arsenic resistance in Pseudomonas fluorescens strain MSP3.
    Prithivirajsingh S; Mishra SK; Mahadevan A
    Biochem Biophys Res Commun; 2001 Feb; 280(5):1393-401. PubMed ID: 11162686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan.
    Liao VH; Chu YJ; Su YC; Hsiao SY; Wei CC; Liu CW; Liao CM; Shen WC; Chang FJ
    J Contam Hydrol; 2011 Apr; 123(1-2):20-9. PubMed ID: 21216490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics.
    Cavalca L; Zanchi R; Corsini A; Colombo M; Romagnoli C; Canzi E; Andreoni V
    Syst Appl Microbiol; 2010 Apr; 33(3):154-64. PubMed ID: 20303688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers: Achromobacter sp. SY8 and Pseudomonas sp. TS44.
    Cai L; Rensing C; Li X; Wang G
    Appl Microbiol Biotechnol; 2009 Jun; 83(4):715-25. PubMed ID: 19283378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of arsenite by two β-proteobacteria isolated from soil.
    Bachate SP; Khapare RM; Kodam KM
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):2135-45. PubMed ID: 21983709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenical resistance in the IncHI2 plasmids.
    Ryan D; Colleran E
    Plasmid; 2002 May; 47(3):234-40. PubMed ID: 12151239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Arsenite Oxidation Potential of Native Microbial Communities from Arsenic-Rich Freshwaters.
    Fazi S; Crognale S; Casentini B; Amalfitano S; Lotti F; Rossetti S
    Microb Ecol; 2016 Jul; 72(1):25-35. PubMed ID: 27090902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenite oxidation by a facultative chemolithoautotrophic Sinorhizobium sp. KGO-5 isolated from arsenic-contaminated soil.
    Dong D; Ohtsuka T; Dong DT; Amachi S
    Biosci Biotechnol Biochem; 2014; 78(11):1963-70. PubMed ID: 25051896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nocardioform arsenic resistance plasmids and construction of Rhodococcus cloning vectors.
    Dabbs ER; Gowan B; Andersen SJ
    Plasmid; 1990 May; 23(3):242-7. PubMed ID: 2217574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of arsenic on the biofilm formations of arsenite-oxidizing bacteria.
    Zeng XC; He Z; Chen X; Cao QAD; Li H; Wang Y
    Ecotoxicol Environ Saf; 2018 Dec; 165():1-10. PubMed ID: 30173020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.