These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 25617754)

  • 1. A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast.
    Hagman A; Piškur J
    PLoS One; 2015; 10(1):e0116942. PubMed ID: 25617754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new model for the aerobic metabolism of yeast allows the detailed analysis of the metabolic regulation during glucose pulse.
    Kesten D; Kummer U; Sahle S; Hübner K
    Biophys Chem; 2015 Nov; 206():40-57. PubMed ID: 26176974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast "make-accumulate-consume" life strategy evolved as a multi-step process that predates the whole genome duplication.
    Hagman A; Säll T; Compagno C; Piskur J
    PLoS One; 2013; 8(7):e68734. PubMed ID: 23869229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the yeast short-term Crabtree effect and its origin.
    Hagman A; Säll T; Piškur J
    FEBS J; 2014 Nov; 281(21):4805-14. PubMed ID: 25161062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae.
    Vemuri GN; Eiteman MA; McEwen JE; Olsson L; Nielsen J
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2402-7. PubMed ID: 17287356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Why, when, and how did yeast evolve alcoholic fermentation?
    Dashko S; Zhou N; Compagno C; Piškur J
    FEMS Yeast Res; 2014 Sep; 14(6):826-32. PubMed ID: 24824836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of growth and sugar consumption in yeasts.
    van Dijken JP; Weusthuis RA; Pronk JT
    Antonie Van Leeuwenhoek; 1993; 63(3-4):343-52. PubMed ID: 8279829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Candida albicans--a pre-whole genome duplication yeast--is predominantly aerobic and a poor ethanol producer.
    Rozpędowska E; Galafassi S; Johansson L; Hagman A; Piškur J; Compagno C
    FEMS Yeast Res; 2011 May; 11(3):285-91. PubMed ID: 21205163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolomics approach to reduce the Crabtree effect in continuous culture of Saccharomyces cerevisiae.
    Imura M; Iwakiri R; Bamba T; Fukusaki E
    J Biosci Bioeng; 2018 Aug; 126(2):183-188. PubMed ID: 29685822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single Gal4-like transcription factor activates the Crabtree effect in Komagataella phaffii.
    Ata Ö; Rebnegger C; Tatto NE; Valli M; Mairinger T; Hann S; Steiger MG; Çalık P; Mattanovich D
    Nat Commun; 2018 Nov; 9(1):4911. PubMed ID: 30464212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of nitrogen metabolism in the triggering of ethanol fermentation in aerobic chemostat cultures of Saccharomyces cerevisiae.
    Aon JC; Cortassa S
    Metab Eng; 2001 Jul; 3(3):250-64. PubMed ID: 11461147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative aerobic physiology of the yeast Dekkera bruxellensis, a major contaminant in bioethanol production plants.
    Leite FC; Basso TO; Pita Wde B; Gombert AK; Simões DA; de Morais MA
    FEMS Yeast Res; 2013 Feb; 13(1):34-43. PubMed ID: 23078341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catabolite repression mutants of Saccharomyces cerevisiae show altered fermentative metabolism as well as cell cycle behavior in glucose-limited chemostat cultures.
    Aon MA; Cortassa S
    Biotechnol Bioeng; 1998 Jul; 59(2):203-13. PubMed ID: 10099331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentative lifestyle in yeasts belonging to the Saccharomyces complex.
    Merico A; Sulo P; Piskur J; Compagno C
    FEBS J; 2007 Feb; 274(4):976-89. PubMed ID: 17239085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oleic acid delays and modulates the transition from respiratory to fermentative metabolism in Saccharomyces cerevisiae after exposure to glucose excess.
    Feria-Gervasio D; Mouret JR; Gorret N; Goma G; Guillouet SE
    Appl Microbiol Biotechnol; 2008 Feb; 78(2):319-31. PubMed ID: 17909788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose transport in crabtree-positive and crabtree-negative yeasts.
    van Urk H; Postma E; Scheffers WA; van Dijken JP
    J Gen Microbiol; 1989 Sep; 135(9):2399-406. PubMed ID: 2628542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coevolution with bacteria drives the evolution of aerobic fermentation in Lachancea kluyveri.
    Zhou N; Swamy KB; Leu JY; McDonald MJ; Galafassi S; Compagno C; Piškur J
    PLoS One; 2017; 12(3):e0173318. PubMed ID: 28282411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Silico Modeling of Crabtree Effect.
    Ghosh D; De RK
    Endocr Metab Immune Disord Drug Targets; 2017; 17(3):182-188. PubMed ID: 28847265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of alcohols on the respiration and fermentation of aerated suspensions of baker's yeast.
    Carlsen HN; Degn H; Lloyd D
    J Gen Microbiol; 1991 Dec; 137(12):2879-83. PubMed ID: 1791441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.