These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25617791)

  • 1. Inference of other's internal neural models from active observation.
    Kim KJ; Cho SB
    Biosystems; 2015 Feb; 128():37-47. PubMed ID: 25617791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual behavior modelling for robotic theory of mind.
    Chen B; Vondrick C; Lipson H
    Sci Rep; 2021 Jan; 11(1):424. PubMed ID: 33431917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolving neural networks to follow trajectories of arbitrary complexity.
    Inden B; Jost J
    Neural Netw; 2019 Aug; 116():224-236. PubMed ID: 31121420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of artificial intelligence in safe human-robot interactions.
    Najmaei N; Kermani MR
    IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):448-59. PubMed ID: 20699212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural network output feedback control of robot formations.
    Dierks T; Jagannathan S
    IEEE Trans Syst Man Cybern B Cybern; 2010 Apr; 40(2):383-99. PubMed ID: 19661005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The grounding of higher order concepts in action and language: a cognitive robotics model.
    Stramandinoli F; Marocco D; Cangelosi A
    Neural Netw; 2012 Aug; 32():165-73. PubMed ID: 22386502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioural plasticity in evolving robots.
    Carvalho JT; Nolfi S
    Theory Biosci; 2016 Dec; 135(4):201-216. PubMed ID: 27443311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots.
    Ampatzis C; Tuci E; Trianni V; Christensen AL; Dorigo M
    Artif Life; 2009; 15(4):465-84. PubMed ID: 19463056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergence of structured interactions: from a theoretical model to pragmatic robotics.
    Revel A; Andry P
    Neural Netw; 2009 Mar; 22(2):116-25. PubMed ID: 19243912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active vision and receptive field development in evolutionary robots.
    Floreano D; Suzuki M; Mattiussi D
    Evol Comput; 2005; 13(4):527-44. PubMed ID: 16297282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iSpike: a spiking neural interface for the iCub robot.
    Gamez D; Fidjeland AK; Lazdins E
    Bioinspir Biomim; 2012 Jun; 7(2):025008. PubMed ID: 22617339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory learning: a developmental method.
    Zhang Y; Weng J; Hwang WS
    IEEE Trans Neural Netw; 2005 May; 16(3):601-16. PubMed ID: 15940990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self discovery enables robot social cognition: are you my teacher?
    Kaipa KN; Bongard JC; Meltzoff AN
    Neural Netw; 2010; 23(8-9):1113-24. PubMed ID: 20732790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of behavior-based and planning techniques on the small robot maze exploration problem.
    Slusný S; Neruda R; Vidnerová P
    Neural Netw; 2010 May; 23(4):560-7. PubMed ID: 20346859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Body schema learning for robotic manipulators from visual self-perception.
    Sturm J; Plagemann C; Burgard W
    J Physiol Paris; 2009; 103(3-5):220-31. PubMed ID: 19665561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neural learning classifier system with self-adaptive constructivism for mobile robot control.
    Hurst J; Bull L
    Artif Life; 2006; 12(3):353-80. PubMed ID: 16859445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.
    Wai RJ; Yang ZW
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebellar-inspired adaptive control of a robot eye actuated by pneumatic artificial muscles.
    Lenz A; Anderson SR; Pipe AG; Melhuish C; Dean P; Porrill J
    IEEE Trans Syst Man Cybern B Cybern; 2009 Dec; 39(6):1420-33. PubMed ID: 19369158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experiments in Artificial Theory of Mind: From Safety to Story-Telling.
    Winfield AFT
    Front Robot AI; 2018; 5():75. PubMed ID: 33500954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.