These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
465 related articles for article (PubMed ID: 25617805)
21. Multilayered pore-closed PLGA microsphere delivering OGP and BMP-2 in sequential release patterns for the facilitation of BMSCs osteogenic differentiation. Zhang BJ; Han ZW; Duan K; Mu YD; Weng J J Biomed Mater Res A; 2018 Jan; 106(1):95-105. PubMed ID: 28884494 [TBL] [Abstract][Full Text] [Related]
22. Cold atmospheric plasma (CAP)-modified and bioactive protein-loaded core-shell nanofibers for bone tissue engineering applications. Wang M; Zhou Y; Shi D; Chang R; Zhang J; Keidar M; Webster TJ Biomater Sci; 2019 May; 7(6):2430-2439. PubMed ID: 30933194 [TBL] [Abstract][Full Text] [Related]
23. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering. Igwe JC; Mikael PE; Nukavarapu SP J Tissue Eng Regen Med; 2014 Feb; 8(2):131-42. PubMed ID: 22689304 [TBL] [Abstract][Full Text] [Related]
24. Hydrogel micropattern-incorporated fibrous scaffolds capable of sequential growth factor delivery for enhanced osteogenesis of hMSCs. Lee HJ; Koh WG ACS Appl Mater Interfaces; 2014 Jun; 6(12):9338-48. PubMed ID: 24915062 [TBL] [Abstract][Full Text] [Related]
25. Dual effective core-shell electrospun scaffolds: Promoting osteoblast maturation and reducing bacteria activity. De-Paula MMM; Afewerki S; Viana BC; Webster TJ; Lobo AO; Marciano FR Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109778. PubMed ID: 31349506 [TBL] [Abstract][Full Text] [Related]
26. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Li L; Zhou G; Wang Y; Yang G; Ding S; Zhou S Biomaterials; 2015 Jan; 37():218-29. PubMed ID: 25453952 [TBL] [Abstract][Full Text] [Related]
27. Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure. Wu C; Fan W; Zhu Y; Gelinsky M; Chang J; Cuniberti G; Albrecht V; Friis T; Xiao Y Acta Biomater; 2011 Oct; 7(10):3563-72. PubMed ID: 21745610 [TBL] [Abstract][Full Text] [Related]
28. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing. Kim IG; Hwang MP; Du P; Ko J; Ha CW; Do SH; Park K Biomaterials; 2015 May; 50():75-86. PubMed ID: 25736498 [TBL] [Abstract][Full Text] [Related]
29. Bioactive Molecule-loaded Drug Delivery Systems to Optimize Bone Tissue Repair. Oshiro JA; Sato MR; Scardueli CR; Lopes de Oliveira GJP; Abucafy MP; Chorilli M Curr Protein Pept Sci; 2017; 18(8):850-863. PubMed ID: 28355998 [TBL] [Abstract][Full Text] [Related]
30. Three-dimensional printing and in vitro evaluation of poly(3-hydroxybutyrate) scaffolds functionalized with osteogenic growth peptide for tissue engineering. Saska S; Pires LC; Cominotte MA; Mendes LS; de Oliveira MF; Maia IA; da Silva JVL; Ribeiro SJL; Cirelli JA Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():265-273. PubMed ID: 29752098 [TBL] [Abstract][Full Text] [Related]
31. Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses. Gu Y; Huang W; Rahaman MN; Day DE Acta Biomater; 2013 Nov; 9(11):9126-36. PubMed ID: 23827095 [TBL] [Abstract][Full Text] [Related]
32. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Zhang J; Zhao S; Zhu Y; Huang Y; Zhu M; Tao C; Zhang C Acta Biomater; 2014 May; 10(5):2269-81. PubMed ID: 24412143 [TBL] [Abstract][Full Text] [Related]
33. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211 [TBL] [Abstract][Full Text] [Related]
34. Hybrid use of combined and sequential delivery of growth factors and ultrasound stimulation in porous multilayer composite scaffolds to promote both vascularization and bone formation in bone tissue engineering. Yan H; Liu X; Zhu M; Luo G; Sun T; Peng Q; Zeng Y; Chen T; Wang Y; Liu K; Feng B; Weng J; Wang J J Biomed Mater Res A; 2016 Jan; 104(1):195-208. PubMed ID: 26282063 [TBL] [Abstract][Full Text] [Related]
35. Dexamethasone loaded multi-layer poly-l-lactic acid/pluronic P123 composite electrospun nanofiber scaffolds for bone tissue engineering and drug delivery. Birhanu G; Tanha S; Akbari Javar H; Seyedjafari E; Zandi-Karimi A; Kiani Dehkordi B Pharm Dev Technol; 2019 Mar; 24(3):338-347. PubMed ID: 29799305 [TBL] [Abstract][Full Text] [Related]
36. Electrospun Icariin-Loaded Core-Shell Collagen, Polycaprolactone, Hydroxyapatite Composite Scaffolds for the Repair of Rabbit Tibia Bone Defects. Zhao H; Tang J; Zhou D; Weng Y; Qin W; Liu C; Lv S; Wang W; Zhao X Int J Nanomedicine; 2020; 15():3039-3056. PubMed ID: 32431500 [TBL] [Abstract][Full Text] [Related]
37. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361 [TBL] [Abstract][Full Text] [Related]
38. Sequential growth factor delivery from complexed microspheres for bone tissue engineering. Basmanav FB; Kose GT; Hasirci V Biomaterials; 2008 Nov; 29(31):4195-204. PubMed ID: 18691753 [TBL] [Abstract][Full Text] [Related]
39. Osteogenesis and angiogenesis induced by porous β-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways. Wang C; Lin K; Chang J; Sun J Biomaterials; 2013 Jan; 34(1):64-77. PubMed ID: 23069715 [TBL] [Abstract][Full Text] [Related]
40. Bioactive SrO-SiO2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties. Wu C; Fan W; Gelinsky M; Xiao Y; Simon P; Schulze R; Doert T; Luo Y; Cuniberti G Acta Biomater; 2011 Apr; 7(4):1797-806. PubMed ID: 21185955 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]