These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 2561783)

  • 41. Effects of fluoride on matrix proteins and their properties in rat secretory enamel.
    Aoba T; Moreno EC; Tanabe T; Fukae M
    J Dent Res; 1990 Jun; 69(6):1248-55. PubMed ID: 2162362
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Some ultrastructural aspects of biological apatite dissolution and possible role of dislocations.
    Daculsi G; Kerebel B
    J Biol Buccale; 1977 Sep; 5(3):203-18. PubMed ID: 122695
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regeneration of biomimetic hydroxyapatite on etched human enamel by anionic PAMAM template in vitro.
    Chen L; Liang K; Li J; Wu D; Zhou X; Li J
    Arch Oral Biol; 2013 Aug; 58(8):975-80. PubMed ID: 23598056
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamics of enamel formation in the rat incisor tooth.
    Leblond CP; Warshawsky H
    J Dent Res; 1979 Mar; 58(Spec Issue B):950-75. PubMed ID: 283137
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Possible function of matrix proteins in fluoride incorporation into enamel mineral during porcine amelogenesis.
    Aoba T; Collins J; Moreno EC
    J Dent Res; 1989 Jul; 68(7):1162-8. PubMed ID: 2561129
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microbeam electron diffraction and lattice fringe studies of defect structures in enamel apatites.
    Lee DD; LeGeros RZ
    Calcif Tissue Int; 1985 Dec; 37(6):651-8. PubMed ID: 3937591
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Earliest enamel deposits of the rat incisor examined by electron microscopy, electron diffraction, and electron probe microanalysis.
    Landis WJ; Burke GY; Neuringer JR; Paine MC; Nanci A; Bai P; Warshawsky H
    Anat Rec; 1988 Mar; 220(3):233-8. PubMed ID: 2834985
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effects of fluoride on the nanostructure and surface pK of enamel crystals: an atomic force microscopy study of human and rat enamel.
    Robinson C; Yamamoto K; Connell SD; Kirkham J; Nakagaki H; Smith AD
    Eur J Oral Sci; 2006 May; 114 Suppl 1():99-104; discussion 127-9, 380. PubMed ID: 16674669
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure, crystal chemistry and density of enamel apatites.
    Elliott JC
    Ciba Found Symp; 1997; 205():54-67; discussion 67-72. PubMed ID: 9189617
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The ultrastructural localization of iron in rat incisor enamel.
    Selvig KA; Halse A
    Scand J Dent Res; 1975 Mar; 83(2):88-95. PubMed ID: 1056088
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Disruption of enamel crystal formation quantified by synchrotron microdiffraction.
    Al-Jawad M; Addison O; Khan MA; James A; Hendriksz CJ
    J Dent; 2012 Dec; 40(12):1074-80. PubMed ID: 22960538
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-resolution electron microscope and computed images of human tooth enamel crystals.
    Brés EF; Barry JC; Hutchison JL
    J Ultrastruct Res; 1985 Mar; 90(3):261-74. PubMed ID: 3001334
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Particle-Attachment-Mediated and Matrix/Lattice-Guided Enamel Apatite Crystal Growth.
    Jokisaari JR; Wang C; Qiao Q; Hu X; Reed DA; Bleher R; Luan X; Klie RF; Diekwisch TGH
    ACS Nano; 2019 Mar; 13(3):3151-3161. PubMed ID: 30763075
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Observation of the loss of the hydroxyapatite sixfold symmetry in a human fetal tooth enamel crystal.
    Bres EF; Steuer P; Voegel JC; Frank RM; Cuisinier FJ
    J Microsc; 1993 May; 170(Pt 2):147-54. PubMed ID: 8391583
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cellular and chemical events during enamel maturation.
    Smith CE
    Crit Rev Oral Biol Med; 1998; 9(2):128-61. PubMed ID: 9603233
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Apparent solubility distributions of hydroxyapatite and enamel apatite.
    Shellis RP; Wilson RM
    J Colloid Interface Sci; 2004 Oct; 278(2):325-32. PubMed ID: 15450451
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synchronized crystal dissolution behavior for tooth enamel and synthetic (NBS) hydroxyapatite.
    Fawzi MB; Sonobe T; Higuchi WI; Hefferren JJ
    J Dent Res; 1977 Apr; 56(4):394-406. PubMed ID: 265970
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High resolution electron microscopy of the junction between enamel and dental calculus.
    Hayashi Y
    Scanning Microsc; 1993 Sep; 7(3):973-8. PubMed ID: 8146623
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Physiological changes in the morphology of the main structural enamel unit - hydroxyapatite crystal - during its life span (in vitro study)].
    Shumilovich BR; Sadovsky VV; Sushchenko AV; Kharitonov YM
    Stomatologiia (Mosk); 2015; 94(6):11-18. PubMed ID: 27002695
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Length and shape of enamel crystals.
    Daculsi G; Menanteau J; Kerebel LM; Mitre D
    Calcif Tissue Int; 1984 Sep; 36(5):550-5. PubMed ID: 6441627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.