These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 25617866)

  • 1. Degradation of chlorpyrifos in tropical rice soils.
    Das S; Adhya TK
    J Environ Manage; 2015 Apr; 152():36-42. PubMed ID: 25617866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of chlorpyrifos in humid tropical soils.
    Chai LK; Wong MH; Bruun Hansen HC
    J Environ Manage; 2013 Aug; 125():28-32. PubMed ID: 23632002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation kinetics of chlorpyrifos and diazinon in volcanic and non-volcanic soils: influence of cyclodextrins.
    Báez ME; Espinoza J; Fuentes E
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25020-25035. PubMed ID: 29934831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental fate of chlorpyrifos.
    Racke KD
    Rev Environ Contam Toxicol; 1993; 131():1-150. PubMed ID: 7678349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissipation of chlorpyrifos in two soil environments of semi-arid India.
    Menon P; Gopal M; Prasad R
    J Environ Sci Health B; 2004 May; 39(4):517-31. PubMed ID: 15473634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissipation of chlorpyrifos and residue analysis in rice, soil and water under paddy field conditions.
    Zhang X; Shen Y; Yu XY; Liu XJ
    Ecotoxicol Environ Saf; 2012 Apr; 78():276-80. PubMed ID: 22195763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochar amendment effectively reduces the transport of 3,5,6-trichloro-2-pyridinol (a main degradation product of chlorpyrifos) in purple soil: Experimental and modeling.
    Lei W; Tang X; Zhou X
    Chemosphere; 2020 Apr; 245():125651. PubMed ID: 31881382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of chlorpyrifos for termiticidal control in six Australian soils.
    Murray RT; von Stein C; Kennedy IR; Sanchez-Bayo F
    J Agric Food Chem; 2001 Jun; 49(6):2844-7. PubMed ID: 11409976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption and desorption of chlorpyrifos to soils and sediments.
    Gebremariam SY; Beutel MW; Yonge DR; Flury M; Harsh JB
    Rev Environ Contam Toxicol; 2012; 215():123-75. PubMed ID: 22057931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties and uses of chlorpyrifos in the United States.
    Solomon KR; Williams WM; Mackay D; Purdy J; Giddings JM; Giesy JP
    Rev Environ Contam Toxicol; 2014; 231():13-34. PubMed ID: 24723132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacy of Ganoderma sp. JAS4 in bioremediation of chlorpyrifos and its hydrolyzing metabolite TCP from agricultural soil.
    Silambarasan S; Abraham J
    J Basic Microbiol; 2014 Jan; 54(1):44-55. PubMed ID: 23553803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavior of Chlorpyrifos-methyl in soil and sediment.
    Finocchiaro R; Meli S; Gennari M
    J Environ Sci Health B; 2004 May; 39(3):381-92. PubMed ID: 15186028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpretation and estimation for dynamic mobility of chlorpyrifos in soils containing different organic matters.
    Hwang JI; Lee SE; Kim JE
    Environ Geochem Health; 2015 Dec; 37(6):1017-27. PubMed ID: 26055453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption and degradation of triazophos, chlorpyrifos and their main hydrolytic metabolites in paddy soil from Chaohu Lake, China.
    Liang B; Yang C; Gong M; Zhao Y; Zhang J; Zhu C; Jiang J; Li S
    J Environ Manage; 2011 Sep; 92(9):2229-34. PubMed ID: 21592646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of different formulations on chlorpyrifos behavior and risk assessment in bamboo forest of China.
    Liu Y; Mo R; Tang F; Fu Y; Guo Y
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):20245-54. PubMed ID: 26308925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-target effect of continuous application of chlorpyrifos on soil microbes, nematodes and its persistence under sub-humid tropical rice-rice cropping system.
    Kumar U; Berliner J; Adak T; Rath PC; Dey A; Pokhare SS; Jambhulkar NN; Panneerselvam P; Kumar A; Mohapatra SD
    Ecotoxicol Environ Saf; 2017 Jan; 135():225-235. PubMed ID: 27744192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Bacillus thuringiensis supernatant from a fermentation process to improve bioremediation of chlorpyrifos in contaminated soils.
    Aceves-Diez AE; Estrada-Castañeda KJ; Castañeda-Sandoval LM
    J Environ Manage; 2015 Jul; 157():213-9. PubMed ID: 25910975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of Fe-Impregnated Biochar To Efficiently Sorb Chlorpyrifos, Reduce Uptake by Allium fistulosum L., and Enhance Microbial Community Diversity.
    Tang XY; Huang WD; Guo JJ; Yang Y; Tao R; Feng X
    J Agric Food Chem; 2017 Jul; 65(26):5238-5243. PubMed ID: 28562038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between mobility factors (Rf) of two hydrophobic termiticides and selected field and artificial soil parameters.
    Li SN; Sun Y; Yang T; Huangpu WG
    Sci Total Environ; 2007 Dec; 388(1-3):206-13. PubMed ID: 17826820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Gordonia sp JAAS1 in biodegradation of chlorpyrifos and its hydrolysing metabolite 3,5,6-trichloro-2-pyridinol.
    Abraham J; Shanker A; Silambarasan S
    Lett Appl Microbiol; 2013 Dec; 57(6):510-6. PubMed ID: 23909785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.