These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25617870)

  • 1. The use of superporous p(3-acrylamidopropyl)trimethyl ammonium chloride cryogels for removal of toxic arsenate anions.
    Sahiner N; Demirci S; Sahiner M; Yilmaz S; Al-Lohedan H
    J Environ Manage; 2015 Apr; 152():66-74. PubMed ID: 25617870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast removal of high quantities of toxic arsenate via cationic p(APTMACl) microgels.
    Rehman SU; Siddiq M; Al-Lohedan H; Aktas N; Sahiner M; Demirci S; Sahiner N
    J Environ Manage; 2016 Jan; 166():217-26. PubMed ID: 26513320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of As(V), Cr(III) and Cr(VI) from aqueous environments by poly(acrylonitril-co-acrylamidopropyl-trimethyl ammonium chloride)-based hydrogels.
    Dudu TE; Sahiner M; Alpaslan D; Demirci S; Aktas N
    J Environ Manage; 2015 Sep; 161():243-251. PubMed ID: 26188989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cationic hydrogels for toxic arsenate removal from aqueous environment.
    Barakat MA; Sahiner N
    J Environ Manage; 2008 Sep; 88(4):955-61. PubMed ID: 17590264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenite and arsenate removal from wastewater using cationic polymer-modified waste tyre rubber.
    Imyim A; Sirithaweesit T; Ruangpornvisuti V
    J Environ Manage; 2016 Jan; 166():574-8. PubMed ID: 26607568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Comparison of the adsorption of arsenite and arsenate anions from aqueous solution by calcined Mg-Al layered double hydroxides].
    Xing K; Wang HZ; Li XY
    Huan Jing Ke Xue; 2009 Mar; 30(3):748-54. PubMed ID: 19432322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenate removal by layered double hydroxides embedded into spherical polymer beads: Batch and column studies.
    Nhat Ha HN; Kim Phuong NT; Boi An T; Mai Tho NT; Ngoc Thang T; Quang Minh B; Van Du C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(5):403-13. PubMed ID: 26818806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced adsorption of arsenate on the aminated fibers: sorption behavior and uptake mechanism.
    Deng S; Yu G; Xie S; Yu Q; Huang J; Kuwaki Y; Iseki M
    Langmuir; 2008 Oct; 24(19):10961-7. PubMed ID: 18771297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobic cryogels for DNA adsorption: effect of embedding of monosize microbeads into cryogel network on their adsorptive performances.
    Emin Çorman M; Bereli N; Özkara S; Uzun L; Denizli A
    Biomed Chromatogr; 2013 Nov; 27(11):1524-31. PubMed ID: 23780689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of arsenate by cetyltrimethylammonium bromide modified magnetic nanoparticles.
    Jin Y; Liu F; Tong M; Hou Y
    J Hazard Mater; 2012 Aug; 227-228():461-8. PubMed ID: 22703733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of L-lysine imprinted cryogels for immunoglobulin G adsorption.
    Çulha S; Armutcu C; Uzun L; Şenel S; Denizli A
    Mater Sci Eng C Mater Biol Appl; 2015; 52():315-24. PubMed ID: 25953573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dye functionalized cryogel columns for reversible lysozyme adsorption.
    Uygun M; Akduman B; Uygun DA; Akgöl S; Denizli A
    J Biomater Sci Polym Ed; 2015; 26(5):277-89. PubMed ID: 25555198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecularly imprinted composite cryogel for extracorporeal removal of uric acid.
    Osman B; Sagdilek E; Gümrükçü M; Göçenoğlu Sarıkaya A
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110456. PubMed ID: 31472391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible adsorption of catalase onto Fe(3+) chelated poly(AAm-GMA)-IDA cryogels.
    Aktaş Uygun D; Uygun M; Akgöl S; Denizli A
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():379-85. PubMed ID: 25746283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel nanostructured iron oxide cryogels for arsenic (As(III)) removal.
    Otero-González L; Mikhalovsky SV; Václavíková M; Trenikhin MV; Cundy AB; Savina IN
    J Hazard Mater; 2020 Jan; 381():120996. PubMed ID: 31445473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and use of poly(hydroxyethyl methacrylate) cryogels containing L-histidine for β-casein adsorption.
    Yavuz M; Baysal Z
    J Food Sci; 2013 Feb; 78(2):E238-43. PubMed ID: 23331176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of arsenate removal from water by metal-organic frameworks (MOFs).
    Li J; Wu YN; Li Z; Zhu M; Li F
    Water Sci Technol; 2014; 70(8):1391-7. PubMed ID: 25353945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of Pb(II) ions from aqueous solutions using functionalized cryogels.
    Kim MY; Lee TG
    Chemosphere; 2019 Feb; 217():423-429. PubMed ID: 30428427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenite adsorption on cryogels embedded with iron-aluminium double hydrous oxides: possible polishing step for smelting wastewater?
    Kumar PS; Onnby L; Kirsebom H
    J Hazard Mater; 2013 Apr; 250-251():469-76. PubMed ID: 23500428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The removal of sulphate from mine water by precipitation as ettringite and the utilisation of the precipitate as a sorbent for arsenate removal.
    Tolonen ET; Hu T; Rämö J; Lassi U
    J Environ Manage; 2016 Oct; 181():856-862. PubMed ID: 27397845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.