These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25618051)

  • 1. Optimal virtual mechanical impedances for the vibroacoustic active control of a thin plate.
    Michau M; Berry A; Micheau P; Herzog P
    J Acoust Soc Am; 2015 Jan; 137(1):199-207. PubMed ID: 25618051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decentralized harmonic control of sound radiation and transmission by a plate using a virtual impedance approach.
    Quaegebeur N; Micheau P; Berry A
    J Acoust Soc Am; 2009 May; 125(5):2978-86. PubMed ID: 19425641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active vibroacoustic control with multiple local feedback loops.
    Elliott SJ; Gardonio P; Sors TC; Brennan MJ
    J Acoust Soc Am; 2002 Feb; 111(2):908-15. PubMed ID: 11863192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of turbulent boundary layer induced interior noise through active impedance control.
    Remington PJ; Curtis AR; Coleman RB; Knight JS
    J Acoust Soc Am; 2008 Mar; 123(3):1427-38. PubMed ID: 18345832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: part II--Optimization of structural sensor placement.
    Halim D; Cheng L; Su Z
    J Acoust Soc Am; 2011 Apr; 129(4):1991-2004. PubMed ID: 21476655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: robust virtual sensor design.
    Halim D; Cheng L; Su Z
    J Acoust Soc Am; 2011 Mar; 129(3):1390-9. PubMed ID: 21428503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyvinylidene fluoride film sensors in collocated feedback structural control: application for suppressing impact-induced disturbances.
    Ma CC; Chuang KC; Pan SY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2539-54. PubMed ID: 23443690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fault tolerant control for linear parameter varying systems: An improved robust virtual actuator and sensor approach.
    Quadros MM; Bessa IV; Leite VJS; Palhares RM
    ISA Trans; 2020 Sep; 104():356-369. PubMed ID: 32444217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural sensing of interior sound for active control of noise in structural-acoustic cavities.
    Bagha AK; Modak SV
    J Acoust Soc Am; 2015 Jul; 138(1):11-21. PubMed ID: 26233001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust integral variable structure controller and pulse-width pulse-frequency modulated input shaper design for flexible spacecraft with mismatched uncertainty/disturbance.
    Hu Q
    ISA Trans; 2007 Oct; 46(4):505-18. PubMed ID: 17706218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical analysis of the vibroacoustic properties of plates with embedded grids of acoustic black holes.
    Conlon SC; Fahnline JB; Semperlotti F
    J Acoust Soc Am; 2015 Jan; 137(1):447-57. PubMed ID: 25618073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method to compute the radiated sound power based on mapped acoustic radiation modes.
    Wu H; Jiang W; Zhang Y; Lu W
    J Acoust Soc Am; 2014 Feb; 135(2):679-92. PubMed ID: 25234877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decentralized harmonic active vibration control of a flexible plate using piezoelectric actuator-sensor pairs.
    Baudry M; Micheau P; Berry A
    J Acoust Soc Am; 2006 Jan; 119(1):262-77. PubMed ID: 16454282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active control of harmonic sound transmission into an acoustic enclosure using both structural and acoustic actuators.
    Kim SM; Brennan MJ
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2523-34. PubMed ID: 10830376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active control of coupled structural/acoustic intensities in a fluid-loaded elastic plate.
    Fischer M; Hayek SI
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2203-10. PubMed ID: 11108359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimizing the acoustic power radiated by a fluid-loaded curved panel excited by turbulent boundary layer flow.
    Shepherd MR; Hambric SA
    J Acoust Soc Am; 2014 Nov; 136(5):2575-85. PubMed ID: 25373959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rectangular plate with velocity feedback loops using triangularly shaped piezoceramic actuators: experimental control performance.
    Aoki Y; Gardonio P; Elliott SJ
    J Acoust Soc Am; 2008 Mar; 123(3):1421-6. PubMed ID: 18345831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic Acoustic Sensor with an Impedance-Matched Diaphragm Characterized for Body Sound Monitoring.
    Rennoll V; McLane I; Eisape A; Grant D; Hahn H; Elhilali M; West JE
    ACS Appl Bio Mater; 2023 Aug; 6(8):3241-3256. PubMed ID: 37470762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active structural acoustic control using an experimentally identified radiation resistance matrix.
    Milton J; Cheer J; Daley S
    J Acoust Soc Am; 2020 Mar; 147(3):1459. PubMed ID: 32237847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.