These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 25618089)

  • 1. Propagation of time-reversed Lamb waves in bovine cortical bone in vitro.
    Lee KI; Yoon SW
    J Acoust Soc Am; 2015 Jan; 137(1):EL105-10. PubMed ID: 25618089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationships of the group velocity of the time-reversed Lamb wave with bone properties in cortical bone in vitro.
    Lee KI; Yoon SW
    J Biomech; 2017 Apr; 55():147-151. PubMed ID: 28285743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of bone assessment with leaky Lamb waves in bone phantoms and a bovine tibia.
    Lee KI; Yoon SW
    J Acoust Soc Am; 2004 Jun; 115(6):3210-7. PubMed ID: 15237845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlations between ultrasonic guided wave velocities and bone properties in bovine tibia in vitro.
    Lee KI; Yoon SW
    J Acoust Soc Am; 2012 May; 131(5):EL375-81. PubMed ID: 22559455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental observation of cumulative second-harmonic generation of lamb waves propagating in long bones.
    Zhang Z; Liu D; Deng M; Ta D; Wang W
    Ultrasound Med Biol; 2014 Jul; 40(7):1660-70. PubMed ID: 24726796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitation of ultrasonic Lamb waves using a phased array system with two array probes: phantom and in vitro bone studies.
    Nguyen KC; Le LH; Tran TN; Sacchi MD; Lou EH
    Ultrasonics; 2014 Jul; 54(5):1178-85. PubMed ID: 24074751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guided ultrasonic waves in long bones: modelling, experiment and in vivo application.
    Nicholson PH; Moilanen P; Kärkkäinen T; Timonen J; Cheng S
    Physiol Meas; 2002 Nov; 23(4):755-68. PubMed ID: 12450274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The preliminary evaluation of a 1 MHz ultrasound probe for measuring the elastic anisotropy of human cortical bone.
    Daugschies M; Rohde K; Glüer CC; Barkmann R
    Ultrasonics; 2014 Jan; 54(1):4-10. PubMed ID: 23896622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of quantitative viscoelasticity of bovine corneas based on lamb wave dispersion properties.
    Zhang X; Yin Y; Guo Y; Fan N; Lin H; Liu F; Diao X; Dong C; Chen X; Wang T; Chen S
    Ultrasound Med Biol; 2015 May; 41(5):1461-72. PubMed ID: 25638310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro acoustic waves propagation in human and bovine cancellous bone.
    Cardoso L; Teboul F; Sedel L; Oddou C; Meunier A
    J Bone Miner Res; 2003 Oct; 18(10):1803-12. PubMed ID: 14584891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone.
    Ta D; Wang W; Wang Y; Le LH; Zhou Y
    Ultrasound Med Biol; 2009 Apr; 35(4):641-52. PubMed ID: 19153000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative examination of human proximal tibiae in vitro by ultrasonic guided waves and pQCT.
    Tatarinov A; Sarvazyan A; Beller G; Felsenberg D
    Ultrasound Med Biol; 2011 Nov; 37(11):1791-801. PubMed ID: 21924819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of superimposed ultrasonic guided waves in long bones by the joint approximate diagonalization of eigen-matrices algorithm.
    Song X; Ta D; Wang W
    Ultrasound Med Biol; 2011 Oct; 37(10):1704-13. PubMed ID: 21924208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Wavelet-Based Processing method for simultaneously determining ultrasonic velocity and material thickness.
    Loosvelt M; Lasaygues P
    Ultrasonics; 2011 Apr; 51(3):325-39. PubMed ID: 21094965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: a 2D simulation study.
    Bossy E; Talmant M; Laugier P
    J Acoust Soc Am; 2002 Jul; 112(1):297-307. PubMed ID: 12141355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic assessment of cortical bone thickness in vitro and in vivo.
    Karjalainen J; Riekkinen O; Töyräs J; Kröger H; Jurvelin J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2191-7. PubMed ID: 18986867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation of tibial low-frequency ultrasound velocity with femoral radiographic measurements and BMD in elderly women.
    Määttä M; Moilanen P; Nicholson P; Cheng S; Timonen J; Jämsä T
    Ultrasound Med Biol; 2009 Jun; 35(6):903-11. PubMed ID: 19216022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guided ultrasound wave propagation in intact and healing long bones.
    Protopappas VC; Fotiadis DI; Malizos KN
    Ultrasound Med Biol; 2006 May; 32(5):693-708. PubMed ID: 16677929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue evaluation of long cortical bone using ultrasonic guided waves.
    Bai L; Xu K; Li D; Ta D; Le LH; Wang W
    J Biomech; 2018 Aug; 77():83-90. PubMed ID: 29961583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelasticity measurement of ex vivo bovine cartilage using Lamb wave method.
    Xu H; Shi L; Chen S; Zhang X; An KN; Luo ZP
    Phys Med Biol; 2018 Nov; 63(23):235019. PubMed ID: 30484437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.