These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 25618221)

  • 1. Development and validation of an accelerometer-based method for quantifying gait events.
    Boutaayamou M; Schwartz C; Stamatakis J; Denoël V; Maquet D; Forthomme B; Croisier JL; Macq B; Verly JG; Garraux G; Brüls O
    Med Eng Phys; 2015 Feb; 37(2):226-32. PubMed ID: 25618221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heel and toe clearance estimation for gait analysis using wireless inertial sensors.
    Mariani B; Rochat S; Büla CJ; Aminian K
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3162-8. PubMed ID: 22955865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Online decoding of hidden Markov models for gait event detection using foot-mounted gyroscopes.
    Mannini A; Genovese V; Maria Sabatini A
    IEEE J Biomed Health Inform; 2014 Jul; 18(4):1122-30. PubMed ID: 25014927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment and validation of a simple automated method for the detection of gait events and intervals.
    Ghoussayni S; Stevens C; Durham S; Ewins D
    Gait Posture; 2004 Dec; 20(3):266-72. PubMed ID: 15531173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated method to distinguish toe walking strides from normal strides in the gait of idiopathic toe walking children from heel accelerometry data.
    Pendharkar G; Percival P; Morgan D; Lai D
    Gait Posture; 2012 Mar; 35(3):478-82. PubMed ID: 22300731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database.
    Khandelwal S; Wickström N
    Gait Posture; 2017 Jan; 51():84-90. PubMed ID: 27736735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic identification of gait events during walking on uneven surfaces.
    Eckardt N; Kibele A
    Gait Posture; 2017 Feb; 52():83-86. PubMed ID: 27888695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Validation of a Biofeedback Device to Improve Heel-to-Toe Gait in Seniors.
    Vadnerkar A; Figueiredo S; Mayo NE; Kearney RE
    IEEE J Biomed Health Inform; 2018 Jan; 22(1):140-146. PubMed ID: 28186914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated detection of instantaneous gait events using time frequency analysis and manifold embedding.
    Aung MS; Thies SB; Kenney LP; Howard D; Selles RW; Findlow AH; Goulermas JY
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):908-16. PubMed ID: 23322764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait phase detection and discrimination between walking-jogging activities using hidden Markov models applied to foot motion data from a gyroscope.
    Mannini A; Sabatini AM
    Gait Posture; 2012 Sep; 36(4):657-61. PubMed ID: 22796244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of Temporal Gait Events from a Single Accelerometer Through the Scale-Space Filtering Idea.
    González I; Fontecha J; Hervás R; Bravo J
    J Med Syst; 2016 Dec; 40(12):251. PubMed ID: 27714561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two simple methods for determining gait events during treadmill and overground walking using kinematic data.
    Zeni JA; Richards JG; Higginson JS
    Gait Posture; 2008 May; 27(4):710-4. PubMed ID: 17723303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inertial sensing algorithms for long-term foot angle monitoring for assessment of idiopathic toe-walking.
    Chalmers E; Le J; Sukhdeep D; Watt J; Andersen J; Lou E
    Gait Posture; 2014; 39(1):485-9. PubMed ID: 24050952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of toe-off event time during treadmill locomotion using kinematic data.
    De Witt JK
    J Biomech; 2010 Nov; 43(15):3067-9. PubMed ID: 20801452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative estimation of foot-flat and stance phase of gait using foot-worn inertial sensors.
    Mariani B; Rouhani H; Crevoisier X; Aminian K
    Gait Posture; 2013 Feb; 37(2):229-34. PubMed ID: 22877845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Three Motion Capture-Based Algorithms for Spatiotemporal Gait Characteristics: How Do Algorithms Affect Accuracy and Precision of Clinical Outcomes?
    Caron-Laramée A; Walha R; Boissy P; Gaudreault N; Zelovic N; Lebel K
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Focusing on heel strike improves toe clearance in people with Parkinson's disease: an observational pilot study.
    Ginis P; Pirani R; Basaia S; Ferrari A; Chiari L; Heremans E; Canning CG; Nieuwboer A
    Physiotherapy; 2017 Dec; 103(4):485-490. PubMed ID: 28784427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic detection of gait events using kinematic data.
    O'Connor CM; Thorpe SK; O'Malley MJ; Vaughan CL
    Gait Posture; 2007 Mar; 25(3):469-74. PubMed ID: 16876414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel kinematic detection of foot-strike and toe-off events during noninstrumented treadmill running to estimate contact time.
    Patoz A; Lussiana T; Gindre C; Malatesta D
    J Biomech; 2021 Nov; 128():110737. PubMed ID: 34517256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.