These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25618354)

  • 1. Chemical genomic profiling via barcode sequencing to predict compound mode of action.
    Piotrowski JS; Simpkins SW; Li SC; Deshpande R; McIlwain SJ; Ong IM; Myers CL; Boone C; Andersen RJ
    Methods Mol Biol; 2015; 1263():299-318. PubMed ID: 25618354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical-genomic profiling: systematic analysis of the cellular targets of bioactive molecules.
    Andrusiak K; Piotrowski JS; Boone C
    Bioorg Med Chem; 2012 Mar; 20(6):1952-60. PubMed ID: 22261022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining functional genomics and chemical biology to identify targets of bioactive compounds.
    Ho CH; Piotrowski J; Dixon SJ; Baryshnikova A; Costanzo M; Boone C
    Curr Opin Chem Biol; 2011 Feb; 15(1):66-78. PubMed ID: 21093351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast chemical genomics and drug discovery: an update.
    Hoon S; St Onge RP; Giaever G; Nislow C
    Trends Pharmacol Sci; 2008 Oct; 29(10):499-504. PubMed ID: 18755517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures.
    Pierce SE; Davis RW; Nislow C; Giaever G
    Nat Protoc; 2007; 2(11):2958-74. PubMed ID: 18007632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical-genetic approaches for exploring the mode of action of natural products.
    Lopez A; Parsons AB; Nislow C; Giaever G; Boone C
    Prog Drug Res; 2008; 66():237, 239-71. PubMed ID: 18416308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid Identification of Chemoresistance Mechanisms Using Yeast DNA Mismatch Repair Mutants.
    Ojini I; Gammie A
    G3 (Bethesda); 2015 Jul; 5(9):1925-35. PubMed ID: 26199284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using BEAN-counter to quantify genetic interactions from multiplexed barcode sequencing experiments.
    Simpkins SW; Deshpande R; Nelson J; Li SC; Piotrowski JS; Ward HN; Yashiroda Y; Osada H; Yoshida M; Boone C; Myers CL
    Nat Protoc; 2019 Feb; 14(2):415-440. PubMed ID: 30635653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical genetic and chemogenomic analysis in yeast.
    Coorey NV; Sampson LD; Barber JM; Bellows DS
    Methods Mol Biol; 2014; 1205():169-86. PubMed ID: 25213245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining the mode of action of bioactive compounds.
    Azad MA; Wright GD
    Bioorg Med Chem; 2012 Mar; 20(6):1929-39. PubMed ID: 22300885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confirmation of the cellular targets of benomyl and rapamycin using next-generation sequencing of resistant mutants in S. cerevisiae.
    Wride DA; Pourmand N; Bray WM; Kosarchuk JJ; Nisam SC; Quan TK; Berkeley RF; Katzman S; Hartzog GA; Dobkin CE; Scott Lokey R
    Mol Biosyst; 2014 Dec; 10(12):3179-87. PubMed ID: 25257345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Barcode sequencing for understanding drug-gene interactions.
    Smith AM; Durbic T; Kittanakom S; Giaever G; Nislow C
    Methods Mol Biol; 2012; 910():55-69. PubMed ID: 22821592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic phenotyping by barcode sequencing broadly distinguishes between alkylating agents, oxidizing agents, and non-genotoxic agents, and reveals a role for aromatic amino acids in cellular recovery after quinone exposure.
    Svensson JP; QuirĂ³s Pesudo L; McRee SK; Adeleye Y; Carmichael P; Samson LD
    PLoS One; 2013; 8(9):e73736. PubMed ID: 24040048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomics and transcriptomics in drug discovery.
    Dopazo J
    Drug Discov Today; 2014 Feb; 19(2):126-32. PubMed ID: 23773860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From drug to protein: using yeast genetics for high-throughput target discovery.
    Armour CD; Lum PY
    Curr Opin Chem Biol; 2005 Feb; 9(1):20-4. PubMed ID: 15701448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic Screens for Determination of Mechanism of Action.
    Gay-Andrieu F; Alex D; Calderone R
    Methods Mol Biol; 2016; 1356():165-72. PubMed ID: 26519072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A survey of yeast genomic assays for drug and target discovery.
    Smith AM; Ammar R; Nislow C; Giaever G
    Pharmacol Ther; 2010 Aug; 127(2):156-64. PubMed ID: 20546776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemogenomic approaches to elucidation of gene function and genetic pathways.
    Pierce SE; Davis RW; Nislow C; Giaever G
    Methods Mol Biol; 2009; 548():115-43. PubMed ID: 19521822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MOSAIC: a chemical-genetic interaction data repository and web resource for exploring chemical modes of action.
    Nelson J; Simpkins SW; Safizadeh H; Li SC; Piotrowski JS; Hirano H; Yashiroda Y; Osada H; Yoshida M; Boone C; Myers CL
    Bioinformatics; 2018 Apr; 34(7):1251-1252. PubMed ID: 29206899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The novel equisetin-like compound, TA-289, causes aberrant mitochondrial morphology which is independent of the production of reactive oxygen species in Saccharomyces cerevisiae.
    Quek NC; Matthews JH; Bloor SJ; Jones DA; Bircham PW; Heathcott RW; Atkinson PH
    Mol Biosyst; 2013 Aug; 9(8):2125-33. PubMed ID: 23715404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.